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Descriptive Statistics

Statistical methods fall into two broad areas: descriptive statistics and infere

. Descriptive statistics merely describe, organize, or summar
to the actual data available. Examples include the mean bl
of patients and the success rate of a surgical procedure.

. Inferential statistics involve making inferences that go b
They usually involve inductive reasoning (i.e., generalizin
having observed only a sample). Examples include the me:
Americans and the expected success rate of a surgical pro
have not yet undergone the operation.

POPULATIONS, SAMPLES, AND ELEMENTS

A population is the universe about which an investigaror wishes to draw concl
sist of people, but may be a population of measurements. Strictly speaking, if &
draw conclusions about the blood pressure of Americans, the population cor
sure measurements, not the Americans themselves.

A sample is a subset of the population—the part thar is actually being obser
researchers rarely can study whole populations, inferential statistics are almost
conclusions about a population when only a sample has actually been studiec

A single observation—such as one person’s blood pressure—is an element, d¢
ber of elements in a population is denoted by N, and the number of elemer
population therefore consists of all the elements from X, to Xy, and a sample
elements.

Most samples used in biomedical research are probability samples— samples |
can specify the probability of any one element in the population being include:
one is picking a sample of 4 playing cards at random from a pack of 52 cards, t
1 card will be included is 4/52. Probability samples permit the use of inferes
nonprobability samples allow only descriptive statistics to be used. There are f
ability samples: simple random samples, stratified random samples, cluster s:
samples.

Simple random samples

The simple random sample is the simplest kind of probability sample. It is dr
every element in the population has an equal probability of being included,
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\ random sample is defined by the method of drawing the sample, not by the out-
re picked out of the pack of cards, this does not in itself mean that the sample

ative if it closely resembles the population from which it is drawn. All types of
‘0 be representative, but they cannot guarantee representativeness. Nonrepre-
cause serious problems. (Four hearts are clearly not representative of all the

of a nonrepresentative sample was an opinion poll taken before the 1936 U.S.
ion. On the basis of a sample of more than 2 million people, it was predicted
n would achieve a landslide victory over Franklin Delano Roosevelt, but the
osite. The problem? The sample was drawn from records of telephone and au-
ip—people who owned such items in that Depression year were not at all rep-
electorate as a whole.

monstrates bias if it consistently errs in a particular direction. For example, in
from a population consisting of 500 white people and 500 black people, a sam-
sistently produces more than 5 white people would be biased. Biased samples
entative, and true randomization is proof against bias.

samples

sample, the population is first divided into relatively internally homogeneous
vhich random samples are then drawn. This stratification results in greater rep-
ample, instead of drawing one sample of 10 people from a total population con-
d 500 black people, one random sample of 5 could be taken from each ethnic
arately, thus guaranteeing the racial representativeness of the resulting overall

e used when it is too expensive or laborious to draw a simple random or strat-
‘or example, in a survey of 100 medical students in the United States, an in-
by selecting a random set of groups or “clusters”—such as a random set of 10
—and then interviewing all the students in those 10 schools. This method is
1l and practical than trying to take a random sample of 100 directly from the
medical students.

2S

g elements in a systematic way—such as every fifth patient admitted to a hos-
»y born in a given area. This type of sampling usually provides the equivalent
nple without actually using randomization.

- common in clinical research.
esearcher advertises in a newspaper to recruit people suffering from a particular

r it is acne, diabetes, or depression—the people who respond form a self-selected
robably not representative of the population of all people with this problem.

1atologist reports on the results of a new treatment for acne which he has been
ents, the sample may not be representative of all people with acne, as it is likely
rith more severe acne (or with good insurance coverage!) seek treatment from

a dermatolog
climatic, anc
patients are
ings to peop

PROBABILITY

The probability

not as percentag
probability of an
tio of the numbe

For example
the tosses; tl
ple was draw
included in

The probability
is denoted by q.

one sample, (q),

The USMLE r

addition rule, t
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Descriptive Statistics 3

a dermatologist. In any case, his practice is probably limited to people in a particular geographic,
climatic, and possibly ethnic area. In this case, although his study may be valid as far as his or her
patients are concerned (this is called internal validity), it may not be valid to generalize his find-
ings to people with acne in general (so the study may lack external validity).

PROBABILITY

The probability of an event is denoted by p. Probabilities are usually expressed as decimal fractions,
not as percentages, and must lie between zero (zero probability) and one (absolute certainty). The
probability of an event cannot be negative. The probability of an event can also be expressed as a ra-
tio of the number of likely outcomes to the number of possible outcomes.

For example, if a fair coin was tossed an infinite number of times, heads would appear on 50% of
the tosses; therefore, the probability of heads, or p (heads), is .50. If a random sample of 10 peo-
ple was drawn an infinite number of times from a population of 100 people, each person would be
included in the sample 10% of the time; therefore, p (being included in any one sample) is .10.

The probability of an event not occurring is equal ro one minus the probability that it will occur; this
is denoted by g. In the above example, the probability of any one person not being included in any
one sample, (q), is therefore (1 — p) = (1 — .10) = .90.

The USMLE requires familiarity with the three main methods of calculating probabilities: the
addirion rule, the multiplication rule, and the binomial distribution.

Addition rule

\ELD &
\/ .

Because the probability of picking a heart card from a deck of cards is 0.25, and the probability
of picking a diamond card is also 0.25, this rule states that the probability of picking a card that
is either a heart or a diamond is 0.25 + 0.25 = 0.50. Because no card can be both a heart and a
diamond, these events meet the requirement of mutual exclusiveness.

The addition rule of probability states that the probability of any one of several partic-
ular events occurring is equal to the sum of their individual probabilities, provided the
events are mutually exclusive (i.e., they cannot both happen).

L7
. 4
)

LN1O

Multiplication rule

\ELD G AL i L :
% The multiplication rule of probability states that the probability of two or more statis-
S tically independent events all occurring is equal to the product of their individual prob-

LU abilities.

If the liferime probability of a person developing cancer is 0.25, and the lifetime probability of
developing schizophrenia is 0.01, the lifetime probability that a person might have both cancer
and schizophrenia is 0.25 X0.01 = .0025, provided that the two illnesses are independent—in
other words, that having one illness neither increases nor decreases the risk of having the other.

T
-
z

Binomial distribution

The probability that a specific combination of mutually exclusive independent events will occur can be de-
termined by the use of the binomial distribution. A binomial distribution is one in which there are
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only two possibilities, such as yes/no, male/female, and healthy/sick. If an experiment has exactly two
possible outcomes (one of which is generally termed “success”), the binomial distribution gives the
probability of obtaining an exact number of successes in a series of independent trials.

A typical medical use of the binomial distribution is in genetic counseling. Inheritance of a disorder
such as Tay-Sachs disease follows a binomial distribution: there are two possible events (inheriting
the disease or not inheriting it) that are mutually exclusive (one person cannot both have and not
have the disease), and the possibilities are independent (if one child in a family inherits the disorder,
this does not affect the chance of another child inheriting it).

A physician could therefore use the binomial distribution to inform a couple who are carriers of
the disease how probable it is that some specific combination of events might occur—such as the
probability that if they are to have two children, neither will inherit the disease. The formula for
the binomial distribution does not need to be learned or used for the purposes of the USMLE.

TYPES OF DATA

The choice of an appropriate statistical technique depends on the type of data in question. Data will
always form one of four scales of measurement: nominal, ordinal, interval, or ratio. The mnemonic
“NOIR” can be used to remember these scales in order. Data may also be characterized as discrete or
continuous.

Nominal Nominal scale data are divided into qualitative categories or groups, such as
male/female, black/white, urban/suburban/rural, and red/green. There is no
implication of order or ratio. Nominal data that fall into only two groups are
called dichotomous data.

Ordinal Ordinal scale data can be placed in a meaningful order (e.g., students may be
ranked 1st/2nd/3rd in their class). However, there is no information about
the size of the interval—no conclusion can be drawn about whether the dif-
ference between the first and second students is the same as the difference be-
tween the second and third.

Interval Interval scale data are like ordinal data in that they can be placed in a mean-
ingful order. In addition, they have meaningful intervals between items,
which are usually measured quantities. For example, on the Celsius scale the
difference between 100° and 90° is the same as the difference between 50°
and 40°. However, because interval scales do not have an absolute zero, ra-
tios of scores are not meaningful: 100°C is not twice as hot as 50°C, because
0°C does not indicate a complete absence of heat.

Ratio A ratio scale has the same properties as an interval scale; however, because it
has an absolute zero, meaningful ratios do exist. Most biomedical variables
form a ratio scale: weight in grams or pounds, time in seconds or days, blood
pressure in millimeters of mercury, and pulse rate in beats per minute are all
ratio scale data. The only ratio scale of temperature is the Kelvin scale, in
which zero degrees indicates an absolute absence of heat, just as a zero pulse
rate indicates an absolute lack of heartbeat. Therefore, it is correct to say that
a pulse rate of 120 beats/min is twice as fast as a pulse rate of 60 beats/min, or
that 300°K is twice as hot as 150°K.

Discrete Discrete variables can take only certain values and none in between. For ex-
ample, the number of patients in a hospital census may be 178 or 179, but it
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cannot be in between these two; the number of syringes used in a clinic on
any given day may increase or decrease only by units of one.

Continuous Continuous variables may take any value (typically between certain limits).
Most biomedical variables are continuous (e.g., a patient’s weight, height,
age, and blood pressure). However, the process of measuring or reporting con-
tinuous variables will reduce them to a discrete variable; blood pressure may
be reported to the nearest whole millimeter of mercury, weight to the near-
est pound, and age to the nearest year.

FREQUENCY DISTRIBUTIONS

A set of unorganized data is difficult to digest and understand. Consider a study of the serum choles-
terol levels of a sample of 200 men: a list of the 200 levels would be of little value in itself. A simple
first way of organizing the data is to list all the possible values between the highest and the lowest in
order, recording the frequency (f) with which each score occurs. This forms a frequency distribu-
tion. If the highest serum cholesterol level were 260 mg/dl, and the lowest were 161 mg/dl, the fre-
quency distribution might be as shown in Table 1-1

Grouped frequency distributions

Table 1-1 is an unwieldy presentation of data. These data can be made more manageable by creating
a grouped frequency distribution, shown in Table 1-2. Individual scores are grouped (between 7 and
20 groups are usually appropriate). Each group of scores encompasses an equal class interval, In this
example there are 10 groups with a class interval of 10 (161 to 170, 171 to 180, and so on).

Relative frequency distributions

As Table 1-2 shows, a grouped frequency distribution can be transformed into a relative frequency
distribution, which shows the percentage of all the elements that fall within each class interval. The
relative frequency of elements in any given class interval is found by dividing f, the frequency (or
number of elements) in that class interval, by n (the sample size, which in this case is 200). By mul-
tiplying the result by 100, it is converted into a percentage. Thus, this distribution shows, for exam-
ple, that 19% of this sample had serum cholesterol levels between 211 and 220 mg/dl.

Cumulative frequency distributions

Table 1-2 also shows a cumulative frequency distribution. This is also expressed as a percentage; it
shows the percentage of elements lying within and below each class interval. Although a group may be
called the 211-220 group, this group actually includes the range of scores that lie from 210.5 up to
and including 220.5—so these figures are the exact upper and lower limits of the group.

The relative frequency column shows that 2% of the distribution lies in the 161-170 group and 2.5%
lies in the 171-180 group; therefore, a total of 4.5% of the distribution lies at or below a score of 180.5,
as shown by the cumulative frequency column in Table 1-2. A further 6% of the distribution lies in the
181-190 group; therefore, a total of (2 + 2.5 + 6) = 10.5% lies at or below a score of 190.5. A man
with a serum cholesterol level of 190 mg/dl can be told that roughly 10% of this sample had lower lev-
els than his, and approximately 90% had scores above his. The cumulative frequency of the highest
group (251-260) must be 100, showing that 100% of the distribution lies at or below a score of 260.5.
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Table 1-1
Score f Score f Score f Score f Score f
260 1 240 2 220 4 200 3 180 0
259 0 239 1 219 2 199 0 179 2
258 1 238 2 218 1 198 A 178 1
257 0 237 0] 217 3 197 3 177 0
256 0 236 3 216 4 196 2 176 0
255 0 235 1 215 5 195 0 175 0
254 1 234 2 214 3 194 3 174 1
253 0 233 2 213 4 193 3 173 0
252 1 232 4 212 6 192 (0] 172 0
251 1 231 2 211 5 191 2 171 1
250 0 230 3 210 8 190 2 170 1
249 2 229 1 209 9 189 1 169 1.
248 1 228 0 208 1 188 2 168 0]
247 1 227 2 207 9 187 SK 167 0
246 0 226 3 206 8 186 0 166 0
245 1 225 3 205 6 185 2 165 1
244 2 224 2 204 8 184 1 164 0
243 3 223 1 203 4 183 1 163 0
242 2 222 2 202 5 182 1 162 0
241 1 221 1 201 4 181 1 161 1

Graphical presentations of frequency distributions

Frequency distributions are often presented as graphs, most commonly as histograms. Figure 1-1 is a
histogram of the grouped frequency distribution shown in Table 1-2; the abscissa (X or horizontal
axis) shows the grouped scores, and the ordinate (Y or vertical axis) shows the frequencies.

To display nominal scale data, a bar graph is typically used. For example, if a group of 100 men had
a mean serum cholesterol value of 212 mg/dl, and a group of 100 women had a mean value of 185
mg/dl, the means of these two groups could be presented as a bar graph, as shown in Figure 1-2.

Bar graphs are identical to frequency histograms, except that each rectangle on the graph is clearly
separated from the others by a space, showing that the data form separate categories (such as male
and female) rather than continuous groups.

For ratio or interval scale data, a frequency distribution may be drawn as a frequency polygon, in
which the midpoints of each class interval are joined by straight lines, as shown in Figure 1-3.

A cumulative frequency distribution can also be presented graphically as a polygon, as shown in Fig-
ure 1-4A. Cumulative frequency polygons typically form a characteristic S-shaped curve known as
an ogive, which the curve in Figure 1-4A approximates.
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Table 1-2
Relative f Cumulative f
Interval Frequency f % rel f % cum f
251-260 L5 2.5 100.0
241-250 13 6.5 97.5
231-240 19 9.5 91.0
221-230 18 9.0 81.5
211-220 38 19.0 72.5
201-210 72 36.0 53.5
191-200 14 7.0 17.5
181-190 12 6.0 10.5
171-180 5 2.5 4.5
161-170 4 2.0 2.0

Centiles and other quantiles

The cumulative frequency polygon and the cumulative frequency distribution both illustrate the con-
cept of centile (or percentile) rank, which states the percentage of observations that fall below any
particular score. In the case of a grouped frequency distribution, such as the one in Table 1-2, cen-
tile ranks state the percentage of observations that fall within or below any given class interval. Cen-
tile ranks provide a way of giving information about one individual score in relation to all the other
scores in a distribution.

80

60 =

40 —

Frequency

20 —

a1 ]

L] 1
161-170 171-180 181-190 191-200 201-210 211-220 221-230 231-240 241-250 251-260

Serum cholesterol, mg/dl

Figure 1-1
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250~

Serum cholesterol, mg/di

Males Females

Figure 1-2

For example, the cumulative frequency column of Table 1-2 shows that 91% of the observations fall
below 240.5 mg/dl, which therefore represents the 91st centile (which can be written as Cy,), as
shown in Figure 1-4B. A man with a serum cholesterol level of 240 mg/dl lies at the 91st centile—
about 9% of the scores in the sample are higher than his.

Centile ranks are widely used in reporting scores on educational tests. They are one member of a fam-
ily of values called quantiles, which divide distriburions into a number of equal parts. Centiles divide
a distribution into 100 equal parts. Other quantiles include quartiles, which divide the data into 4
parts, and deciles, which divide a distribution into 10 parts.

Frequency
-
o
1

T T T T T T
161-170 1?1.]130 151!190 191-'200 201-210 211-220 221-230 231-240 241-250 251-260
Serum cholesterol, mg/dl

Figure 1-3
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The normal distribution

Frequency polygons may take many different shapes, but many naturally occurring phenomena are
approximately distributed according to the symmetrical, bell-shaped normal or Gaussian distribu-

tion, as shown in Figure 1-5.

Skewed, J-shaped, and bimodal distributions
Figure 1-6 shows some other frequency distributions. Asymmetrical frequency distributions are called

skewed distributions. Positively (or right) skewed distributions and negatively (or left) skewed dis-
tributions can be identified by the location of the tail of the curve (not by the location of the hump—
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Frequency

Score

Figure 1-5

a common error). Positively skewed distributions have a relatively large number of low scores and a
small number of very high scores, whereas negatively skewed distributions have a relatively large
number of high scores and a small number of low scores.

Figure 1-6 also shows a J-shaped distribution and a bimodal distribution. Bimodal distributions are
sometimes a combination of two underlying normal distributions, such as the heights of a large
number of men and women—each gender forms its own normal distribution around a different mid-

point.

Positively (right) skewed Negatively (left) skewed

J-shaped Bimodal

Figure 1-6
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MEASURES OF CENTRAL TENDENCY

An entire distribution can be characterized by one typical measure that represents all the observa-
tions—measures of central tendency. These measures include the mode, the median, and the mean.

Mode The mode is the observed value that occurs with the greatest frequency. It is
found by simple inspection of the frequency distribution (it is easy to see on
a frequency polygon as the highest point on the curve). If two scores both oc-
cur with the greatest frequency, the distribution is bimodal; if more than two
scores occur with the greatest frequency, the distribution is multimodal. The
mode is sometimes symbolized by Mo. The mode is totally uninfluenced by small
numbers of extreme scores in a distribution.

Median The median is the figure that divides the frequency distribution in half when
all the scores are listed in order. When a distribution has an odd number of
elements, the median is therefore the middle one; when it has an even num-
ber of elements, the median lies halfway between the two middle scores (i.e.,
it is the average or mean of the two middle scores).

For example, in a distribution consisting of the elements 6, 9, 15, 17, 24, the median would be 15. If
the distribution were 6, 9, 15, 17, 24, 29, the median would be 16 (the average of 15 and 17).

The median responds only to the number of scores above it and below it, not to their actual values. If
the above distribution were 6, 9, 15, 17, 24, 500 (rather than 29), the median would still be 16—so
the median is insensitive to small numbers of extreme scores in a distribution; therefore, it is a very useful
measure of central tendency for highly skewed distributions. The median is sometimes symbolized by
Mdn. It is the same as the 50th centile (Cs,).

Mean The mean, or average, is the sum of all the elements divided by the number
of elements in the distribution. It is symbolized by p in a population, and by
X (“x-bar") in a sample. The formulas for calculating the mean are therefore

o 2X
h= in a population, and X = —— in a sample
n

where 2 is “the sum of,” so that =X = X; + X; + X5 + ... X,

Unlike other measures of central tendency, the mean responds to the exact value of every score in the
distribution, and unlike the median and the mode, it is very sensitive to extreme scores. As a result,
it is not usually an appropriate measure for characterizing very skewed distributions. On the other
hand, it has a desirable property: repeated samples drawn from the same population will tend to have
very similar means, and so the mean is the measure of central tendency that best resists the influence
of fluctuation between different samples. For example, if repeated blood samples were taken from a
patient, the mean number of white blood cells per high-powered microscope field would fluctuate less
from sample to sample than would the modal or median number of cells.

The relationship among the three measures of central tendency depends on the shape of the distrib-
ution. In a unimodal symmetrical distribution (such as the normal distribution), all three measures
are identical, but in a skewed distribution they will usually differ. Figures 1-7 and 1-8 show positively
and negatively skewed distributions, respectively. In both of these, the mode is simply the most fre-
quently occurring score (the highest point on the curve); the mean is pulled up or down by the in-
fluence of a relatively small number of very high or very low scores; and the median lies between the
two, dividing the distribution into two equal areas under the curve.



12  High-Yield Biostatistics

3 %
= E E =
B B
= =

Mean
ean

Figure 1-7 Figure 1-8

MEASURES OF VARIABILITY

Figure 1-9 shows two normal distributions, A and B; their means, modes, and medians are all iden-
tical, and, like all normal distributions, they are symmetrical and unimodal. Despite these similari-
ties, these two distributions are obviously different; therefore, describing a normal distribution in
terms of the three measures of central tendency alone is clearly inadequate.

Although these two distributions have identical measures of central tendency, they differ in terms of
their variability—the extent to which their scores are clustered together or scattered about. The
scores forming distribution A are clearly more scattered than are those forming distribution B. Vari-
ability is a very important quality: if these two distributions represented the fasting glucose levels of
diabetic patients taking two different drugs for glycemic control, for example, then drug B would be
the better medication, as fewer patients on this distriburion have very high or very low glucose
levels—even though the mean effect of drug B is the same as that of drug A.

There are three important measures of variability: range, variance, and standard deviation.

Range

The range is the simplest measure of variability. It is the difference between the lowest and the high-
est scores in the distribution. It therefore responds to these two scores only.

For example, in the distribution 6, 9, 15, 17, 24, the range is (24 — 6) = 18; but in the distribu-
tion 6, 9, 15, 17, 24, 500, the range is (500 — 6) = 494.

Coincident means, modes, and medians

Frequency

Figure 1-9
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Variance (and deviation scores) Calculating variance (and standard deviation) involves
the use of deviation scores. The deviation score of an el-
ement is found by subtracting the distribution’s mean
from the element. A deviation score is symbolized by the
letter x (as opposed to X, which symbolizes an element);
so the formula for deviation scores is

x=X—-x

For example, in a distribution with a mean of 16, an element of 23 would have a deviation score
of (23 — 16) = 7. On the same distribution, an element of 11 would have a deviation score of

{1 —16) = —5

When calculating deviation scores for all the elements in a distribution, the results can be verified by
checking that the sum of the deviation scores for all the elements is zero; i.e., 2x=0.

The variance of a distribution is the mean of the squares of all the deviation scores in the distribu-
tion. The variance is therefore obtained by:

. finding the deviarion score (x) for each element,
. squaring each of these deviation scores (thus eliminating minus signs), and then
. obtaining their mean in the usual way—by adding them all up and then dividing

the total by their number.

Variance is symbolized by o2 for a population and by §? for a sample. Thus,

— )2 ot — X)) 52
ol = HR ) or 2 in a population, and 8¢ = el oat or 22 in a sample.!
N N n n

Variance is sometimes known as mean square. Variance is expressed in squared units of measurement,
limiting its usefulness as a descriptive term—its intuitive meaning is poor.

Standard deviation The standard deviation remedies this problem: it is the square root
of the variance, so it is expressed in the same units of measurement
as the original data. The symbols for standard deviation are there-
fore the same as the symbols for variance, but without being raised
to the power of two. So the standard deviation of a population is
o, and the standard deviation of a sample is 8. Standard deviation
is sometimes written as SD.

QELD o The standard deviation is particularly useful in normal distributions, because the pro-
gﬂO portion of elements in the normal distribution (i.e., the proportion of the area under the
-
z¥ A

-

\/ ; s curve) is a constant for a given number of standard deviations above or below the mean of the
distribution, as shown in Figure 1-10.

In Figure 1-10:

. approximately 68% of the distribution falls within +1 standard deviation of the
mean,
* approximately 95% of the distribution falls within £2 standard deviations of the

mean,
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Figure 1-10
. and approximately 99.7% of the distribution falls within =3 standard deviations

of the mean.

Because these proportions hold true for every normal distribution, they should be memorized.

Therefore, if a population’s resting heart rate is normally distributed with a mean () of 70 and a stan-
dard deviation (S) of 10, the proportion of the population thar has a resting heart rate between cer-

tain limits can be stated.

As Figure 1-11 shows, because 68% of the distribution lies within approximately =1 standard devi-
ations of the mean, 68% of the population will have a resting heart rate between 60 and 80 beats/min.

i

-
[~}
(=
@
3
g
w

<t 95%: e

099.7%
T T T
40 50 60 70 80 920 100
H

Figure 1-11
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Similarly, 95% of the population will have a heart rate between approximately 70 = (2 X10) = 50
and 90 bearts/min (i.e., within 2 standard deviations of the mean).

Z SCORES

The location of any element in a normal distribution can be expressed in terms of how many stan-
dard deviations it lies above or below the mean of the distribution. This is the z score of the element.
If the element lies above the mean, it will have a positive z score; if it lies below the mean, it will
have a negative z score.

For example, a heart rate of 85 beats/min in the distribution shown in Figure 1-11 lies 1.5 standard
deviations above the mean, so it has a z score of +1.5. A heart rate of 65 lies 0.5 standard deviations
below the mean, so its z score is —0.5. The formula for calculating 7 scores is therefore

X—p
a

z=

Tables of z scores

Tables of z scores state what proportion of any normal distribution lies above any given z scores, not
just z scores of £1, 2, or 3.

Table 1-3 is an abbreviated table of 7 scores; it shows, for example, that .3085 (or about 31%) of any
normal distribution lies above a 7 score of +0.5. Because normal distributions are symmetrical, this
also means that approximately 31% of the distriburion lies below a z score of —0.5 (which corresponds
to a heart rate of 65 beats/min in Fig. 1-11)—so approximately 31% of this population has a heart
rate below 65 beats/min. By subtracting this proportion from 1, it is apparent that .6915, or about
69%, of the population has a heart rate of above 65 beats/min.

Z scores are standardized or normalized, so they allow scores on different normal distributions ro be
compared. For example, a person’s height could be compared with his or her weight by means of the
respective z scores (provided that both these variables are elements in normal distributions).

Instead of using z scores to find the proportion of a distribution corresponding to a particular score,
we can also do the converse: use z scores to find the score that divides the distribution into specified
proportions.

For example, if we want to know what heart rate divides the fastest-beating 5% of the popula-
tion (i.e., the group at or above the 95th percentile) from the remaining 95%, we can use the z
score table.

In this instance, we want to find the z score that divides the top 5% of the area under the curve from
the remaining area. In Table 1-3, the nearest figure to 5% (.05) is .0495; the z score corresponding
to this is 1.65.

As Figure 1-12 shows, the corresponding heart rate therefore lies 1.65 standard deviations above the
mean, i.e., it is equal to p + 1.65¢ = 70 + (1.65 X10) = 86.5. We can conclude that the fastest-
beating 5% of this population has a heart rate above 86.5 beats/min.

The z score that divides the top 5% of the population from the remaining 95% is not approximately
2. Although 95% of the distribution falls between approximately *2 standard deviations of the mean,
this is the middle 95% (see Fig. 1-11). This leaves the remaining 5% split into two equal parts at the
two tails of the distribution (remember—normal distributions are symmetrical). Therefore, only 2.5%
of the distribution falls more than 2 standard deviations above the mean, and another 2.5% falls more
than 2 standard deviations below the mean.
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Table 1-3
Area
beyond z
poz
z Area beyond z z Area beyond z
0.00 .5000 1.65 .0495
0.05 4801 1.70 .0446
0.10 4602 1.75 .0401
0.15 4404 1.80 .0359
0.20 4207 1.85 .0322
0.25 4013 1.90 .0287
0.30 .3821 1.95 0256
0.35 .3632 2.00 .0228
0.40 .3446 2.05 .0202
0.45 .3264 2.10 .0179
0.50 .3085 2.15 .0158
0.55 2912 2.20 .0139
0.60 2743 2.25 .0112
0.65 .2578 2.30 .0107
0.70 .2420 2.35 .0094
0.75 2266 2.40 .0082
0.80 2119 2.45 .0071
0.85 1977 2.650 .0062
0.90 .1841 2.55 .0054
0.95 A711 2.60 .0047
1.00 .1587 2.65 .0040
1.05 .1469 2.70 .0035
1.10 .1357 2.75 .0030
115 .1251 2.80 .0026
1.20 ATHL 2.85 .0022
1.25 .1056 2.90 .0019
1.30 .0968 2.95 .0016
1.35 .0885 3.00 .0013
1.40 .0808 3.05 .0011
1.45 0735 3.10 .0010
1.50 .0668 345 .0008
1.55 .0606 3.20 .0007
1.60 .0548 3.30 .0005

This table is not a complete listing of z scores. Full z score tables can be found in most statistics text-
books.
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Figure 1-12

Using z scores to specify probability

Z scores also allow us to specify the probability of a randomly picked element being above or below a
particular score.

For example, if we know that 5% of the population has a heart rate above 86.5 beats/min, then
the probability of one randomly selected person from this population having a heart rate above
86.5 beats/min will be 5%, or .05.

We can find the probability that a random person will have a pulse less than 50 beats/min in the same
way. Because 50 lies 2 standard deviations (i.e., 2 X10) below the mean (70), it corresponds to a z
score of —2, and we know that approximately 95% of the distribution lies within the limits z = *2.
Therefore, 5% of the distribution lies outside these limits, equally in each of the two tails of the dis-
tribution. So 2.5% of the distribution lies below 50, and the probability that a randomly selected per-
son has a pulse less than 50 beats/min is 2.5%, or .025.

NOTE

ISome statisticians prefer to use a denominator of n — 1 rather than n in the formula for sample vari-
ance. Both formulas are correct; using n — 1 is preferred when the variance of a small sample is be-
ing used to estimate the variance of the population.

EXERCISES

Select the single best answer to the questions referring to the following scenario.

A family physician is interested in the cigarette use of patients in her practice. She asks all patients
who come into her office if they use cigarettes and determines that 20% of her patients smoke. She
then asks every third smoker who comes to the office how many cigarettes they smoke each day; she
finds that the mean number of cigarettes smoked is 16. She plots the number of cigarettes smoked by
each patient on a frequency distribution and finds that it is normally distributed. She also finds that
the number of male smokers is equal to the number of female smokers. She already knows that half
of her patients are men, and half are women.
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nario would cause the sample to be biased?

The fact that the number of cigarettes smoked is normally distributed.

The fact that systematic samples cannot be representative.

The fact that the number of male smokers is equal to the number of female smokers.

The fact that smokers who come to the office are more likely to be sick, and perhaps more likely
to smoke more cigarettes, than smokers who do not come to the office.

How likely is it that two patients who smoke will independently appear in succession in the
physician’s office?

.20
40
.02
.04
.016

How likely is it that the next patient to come to the office will be a woman or a smoker?

0

20
04
07
02

What type of dara is formed by the figures the physician has generated regarding the number of
cigarettes her patients smoke?

Nominal
Ordinal
Interval
Ratio
Continuous

On the frequency distribution showing the number of cigarettes smoked, what is the relation-
ship between the three measures of central tendency?

The mean, mode, and median will all be at the same point.

The mean will be lower than the median, which will be lower than the mode.
The mean will be higher than the median, which will be higher than the mode.
It is impossible to say from the information given.

A particular patient, Mr. A., smokes 24 cigarettes a day. What is the corresponding deviation score?

24
40
0
+8
-8
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The physician determines the deviation scores for each smoking patient in her sample, squares
each of these scores, adds up all the squared scores, and then divides them by the number of smok-
ing patients in her sample. The resulting figure is

the range.

the percentile rank.
the variance.

the standard deviation.

If she finds that the variance of the number of cigarettes smoked is 16, what is the standard de-
viation!

20
36
16
4
0

What is the z score corresponding to the number of cigarettes (24) smoked by Mr. A.?

=2
+2
0

+8
-8

. Assuming the physician’s sample of smokers is representative of all the smokers in her pracrice,
what proportion of smokers smoke more than 24 cigarettes a day?

2.5%
5%
7.5%
16%
24%

. Assuming the physician’s sample of smokers is representative of all the smokers in her practice,
what proportion of smokers smoke more than 20 cigarettes a day?

2.5%
5%
7.5%
16%
24%

. Assuming the physician’s sample of smokers is representative of all the smokers in her practice,
how likely is it that the next smoker who comes to the office smokes less than 12 cigarettes per
day? (Use the standard deviation calculated in Question 8).
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2.5%
5%

7.5%
16%
24%

Approximately how many cigarettes would a smoker have to smoke each day to lie at the 95th
percentile of smokers in this physician’s practice? (Refer to Table 1-3).

16
18
23
24
32
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Inferential Statistics

At the end of the previous chapter, it was shown how z scores can be used ro find the probability that
a random element will have a score above or below a certain value. To do this, the population had to
be normally distributed, and both the population mean () and the population standard deviation
(o) had to be known.

Most research, however, involves the opposite kind of problem: instead of using informarion abour a
population to draw conclusions or make predictions about a sample, the researcher usually wants to use
the information provided by a sample to draw conclusions about a population. For example, a re-
searcher might want to forecast the results of an election on the basis of an opinion poll, or predict
the effecriveness of a new drug for all patients with a particular disease after it has been tested on only
a small sample of patients.

STATISTICS AND PARAMETERS

In such problems, the population mean and standard deviation, p and o (which are called the pop-
ulation parameters), are unknown; all that is known is the sample mean (X) and standard deviation
(S)—these are called the sample statistics. The task of using a sample to draw conclusions about a
population involves going beyond the actual information that is available; in other words, it involves
inference. Inferential statistics therefore involve using a statistic to estimate a parameter.

However, it is unlikely that a sample will perfectly represent the population it is drawn from: a sta-
tistic (such as the sample mean) will not exactly reflect its corresponding parameter (the population
mean). For example, in a study of intelligence, if a sample of 1000 people is drawn from a population
with a mean IQ of 100, it would not be expected that the mean IQ) of the sample would be exactly
100. There will be sampling error—which is not an error, but just natural, expected random varia-
tion—that will cause the sample statistic to differ from the population parameter. Similarly, if a coin
is tossed 1000 rimes, even if it is perfectly fair, getting exactly 500 heads and 500 tails would not be
expected.

The random sampling distribution of means

Imagine you have a hat containing 100 pieces of paper, numbered from zero to 99. At random,
you take out five pieces of paper, record the number written on each one, and find the mean of
these five numbers. Then you put the pieces of paper back in the hat and draw another random
sample, repeating the same process for approximately 10 minutes.

Do you expect that the means of each of these samples will be exactly the same? Of course not.
Because of sampling error, they vary somewhat. If you plot all the means on a frequency distrib-
ution, the sample means form a distribution, called the random sampling distribution of means.

21
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tribution. If you continued drawing samples and plotting their means ad infinitum, you would find
that the distribution actually becomes a normal distribution! This holds true even if the under-
lying population was not at all normally distributed: in our population of pieces of paper in the
hat, there is just one piece of paper with each number, so the shape of the distribution is actually
rectangular, as shown in Figure 2-1, yet its random sampling distribution of means still tends to
be normal.

These principles are stated by a theorem, called the central limit theorem, which states that the ran-
dom sampling distribution of means will always tend to be normal, irrespective of the shape of the population
distribution from which the samples were drawn. Figure 2-2 is a random sampling distribution of means;
even if the underlying population formed a rectangular, skewed, or any other non-normal distribu-
tion, the means of all the random samples drawn from it will always tend to form a normal distribu-
tion. The theorem further states that the random sampling distribution of means will become closer
to normal as the size of the samples increases.

The theorem also states that the mean of the random sampling distribution of means (symbolized by
W5, showing that it is the mean of the population of all the sample means) is equal to the mean of the
original population; in other words, ; is equal to . (If Figure 2-2 was superimposed on Figure 21,
the means would be the same).

Like all distriburions, the random sampling distribution of means shown in Figure 2-2 not only has
a mean, but it also has a standard deviation. As always, standard deviation is a measure of variabil-
ity—a measure of the degree to which the elements of the distribution are clustered together or scat-
tered widely apart. This particular standard deviation, the standard deviation of the random sampling
distribution of means, is symbolized by o, signifying that it is the standard deviartion of the popula-
tion of all the sample means. It has its own name: standard error, or standard error of the mean,
sometimes abbreviated as SE or SEM. It is a measure of the extent to which the sample means devi-
ate from the true population mean.

Figure 2-2 shows the obvious: when repeated random samples are drawn from a population, most of
the means of those samples are going to cluster around the original population mean. In the “num-
bers in the hat” example, one would expect to find many sample means clustering around 50 (between
40 and 60). Rather fewer sample means would fall between 30 and 40 or between 60 and 70. Far fewer
would lie out toward the extreme “tails” of the distribution (between 0 and 20 or between 80 and 99).

If the sample consisted of just two pieces of paper, what would happen to the shape of Figure 2-2?
Clearly, with an n of just 2, the sample means would be quite likely to lie out toward the tails of the
distribution, giving a broader, fatter shape to the curve, and hence a higher standard error. On the

Frequency 1

Figure 2-1
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Frequency

Hx

Means of random samples

Figure 2-2 The random sampling distribution of means: the ultimate result of drawing a large
number of random samples from a population and plotting each of their individual means on a fre-
quency distribution.

other hand, if the sample consisted of 25 pieces of paper (n = 25), it would be very unlikely for many
of their means to lie far from the center of the curve. Therefore, there would be a much thinner, nar-
rower curve and a lower standard error.

Thus, the shape of the random sampling distribution of means, as reflected by its standard error, is affected

by the size of the samples. In fact, the standard error is equal to the population standard deviation (o) di-

vided by the square root of the size of the samples (n). Therefore, the formula for the standard error is
o

w WV
Standard error

As the formula shows, the standard error is dependent on the size of the samples: standard error is in-
versely related to the square root of the sample size, so that the larger n becomes, the more closely will the
sample means represent the true population mean. This is the mathematical reason why the results of large
studies or surveys are more trusted than the results of small ones—a fact that is intuitively obvious!

Predicting the probability of drawing samples with a given mean

Because the random sampling distribution of means is by definition normal, the known facts about
normal distributions and z scores can be used to find the probability that a sample will have a mean of
above or below a given value, provided, of course, that the sample is a random one. This is a step be-
yond what was possible in Chapter 1, where only the probability that one element would have a score
above or below a given value was predicted.

In addition, because the random sampling distribution of means is normal even when the underlying
population is not normally distributed, z scores can be used to make predictions, regardless of the un-
derlying population distribution—provided, once again, that the sample is random.

Using the standard error

The method used to make a prediction about a sample mean is similar to the method used in Chap-
ter 1 to make a prediction about a single element—it involves finding the z score corresponding to
the value of interest. However, instead of calculating the 7 score in terms of the number of standard
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deviations by which a given single element lies above or below the population mean, the z score is now
calculated in terms of the number of standard errors by which a sample mean lies above or below the
populatiun mean. Therefore, the previous formula

X — —
B ow becomes z = P

o Oz

=

For example, in a population with a mean resting heart rate of 70 beats/min and a standard de-
viation of 10, the probability that a random sample of 25 people will have a mean heart rate above
75 beats/min can be determined. The steps are:

10
. Calculate th o= —o— = =
1. Calculate the standard error: o ~n - Vi 2
X=p _1-70_

2. Calculate the z score of the sample mean: z = 2:5

3. Find the proportion of the normal distribution that lies beyond this z score (2.5). Table 1-3
shows that this proportion is .0062, Therefore, the probability that a random sample of 25
people from this population will have a mean resting heart rate above 75 beats/min is .0062.

Conversely, it is possible to find what random sample mean (n = 25) is so high that it would occur
in only 5% or less of all samples (in other words, what mean is so high that the probability of ob-

taining it is .05 or less):

Table 1-3 shows that the z score that divides the bottom 95% of the distribution from the top
5% is 1.65. The corresponding heart rate is p + 1.65 o (the population mean plus 1.65 stan-
dard errors). As the population mean is 70 and the standard error is 2, the heart rate will be 70
+ (1.65 X2), or 73.3. Figure 2-3 shows the relevant portions of the random sampling distribu-

‘/ z=+1.65

Area = 0.05

Frequency

T T T T T T T T T 1T 7T I I
u-3a H=20 p-1g in p+lo  p+20 p43c

z score -3 -2 -1 0 +1 +2 +3

Heart rate 64 66 68 70 72 74 76

Figure 2-3



Inferential Statistics 25

tion of means; the appropriate  score is +1.65, not 42, because it refers to the top .05 of the dis-
tribution, not the top .025 and the bottom .025 together.

It is also possible to find the limits between which 95% of all possible random sample means would be
expected to fall. As with any normal distribution, 95% of the random sampling distribution of means
lie within approximately =2 standard errors of the population mean (in other words, within z = *2);
therefore, 95% of all possible sample means must lie within approximately =2 standard errors of the
population mean. [As Table 1-3 shows, the exact z scores that correspond to the middle 95% of any
normal distribution are in fact +1.96, not +2: the exact limits are therefore 70 * (1.96 X2) = 66.08
and 73.92]. Applying this to the distribution of resting heart rate, it is apparent that 95% of all possi-
ble random sample means will fall between the limits of . = 2 o, that is, approximately 70 £ (2 X2),
or 66 and 74.

ESTIMATING THE MEAN OF A POPULATION

So far it has been shown how z scores are used to find the probability that a random sample will have
a mean of above or below a given value. It has been shown that 95% of all possible members of the
population will lie within approximately *2 (or, more exactly, =1.96) standard errors of the popu-
lation mean, and 95% of all such means will be within *+2 standard etrors of the mean.

Confidence limits

Logically, if the sample mean (X) lies within *1.96 standard errors of the population mean () 95%
(.95) of the time, then p must lie within +1.96 standard errors of X 95% of the time. These limits of
+1.96 standard errors are called the confidence limits (in this case, the 95% confidence limits). Find-
ing the confidence limits involves inferential statistics, because a sample statistic (X) is being used to
estimate a population parameter ().

For example, if a researcher wishes to find the true mean resting heart rate of a large population, it
would be impractical to take the pulse of every person in the population. Instead, he or she would
draw a random sample from the population and take the pulse of the persons in the sample. As long
as the sample is truly random, the researcher can be 95% confident that the true population mean
lies within #1.96 standard errors of the sample mean.

Therefore, if the mean heart rate of the sample (X) is 74 and o = 2, the researcher can be 95% cer-
tain that w lies within 1.96 standard errors of 74, i.c., between 74 = (1.96 X 2), or 70.08 and 77.92.
The best single estimate of the population mean is still the sample mean, 74—after all, it is the only
piece of actual data on which an estimate can be based.

In general, confidence limits are equal to the sample mean plus or minus the z score obtained from
the table (for the appropriate level of confidence) multiplied by the standard error:
Confidence limits = X * z o

A\ELD

" > Therefore, 95% confidence limits (which are the ones conventionally used in med-
o g  ical research) are approximately equal to the sample mean plus or minus two stan-
z \/"i dard errors.

The difference between the upper and lower confidence limits is called the confidence interval—
sometimes abbreviated as CI.

Researchers obviously want the confidence interval to be as narrow as possible. The formula for con-
fidence limits shows that to make the confidence interval narrower (for a given level of confidence,
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such as 95%) the standard error (oz) must be made smaller. Standard error is found by the formula
o- =0 + Vn. Because ¢ is a population parameter that the researcher cannot change, the only way
to reduce standard error is to increase the sample size n. Once again, there is a mathematical reason
why large studies are trusted more than small ones. Note that the formula for standard error means
that standard error will decrease only in proportion to the square root of the sample size; therefore, the
width of the confidence interval will decrease in proportion to the square root of the sample size. In
other words, to halve the confidence interval, the sample size must be increased fourfold.

Precision and accuracy

Precision is the degree to which a figure (such as an estimate of a population mean) is immune from
random variation. The width of the confidence interval reflects precision—the wider the confidence
interval, the less precise the estimate.

Because the width of the confidence interval decreases in proportion to the square
root of sample size, precision is proportional to the square root of sample size. To double
the precision of an estimate, sample size must be multiplied by 4; to triple precision,
sample size must be mulriplied by 9; and to quadruple precision, sample size must be
multiplied by 16. Increasing the precision of research therefore requires dispropor-
tionate increases in sample size; thus, very precise research is expensive and time-
consuming.

Precision must be distinguished from accuracy, which is the degree to which an estimate is immune
from systematic error or bias.

A good way to remember the difference between precision and accuracy is to think of a person play-
ing darts, aiming at the bull’s eye in the center of the dartboard. Figure 2-4A shows how the dart-
board looks after a player has thrown five darts. Is there much systematic error (bias)? No. The darts
do not tend to err in any one direction. However, although there is no bias, there is much random
variation, as the darts are nort clustered together. Hence, the player’s aim is unbiased (or accurate)
but imprecise. It may seem strange to call such a poor player accurate, but the darts are at least cen-
tered on the bull’s eye, on average. The player needs to reduce the random variation in his or her aim,
rather than aim at a different point.

Figure 2-4B shows a different scenario, but the same questions can be asked. Is there much sys-
tematic error or bias? Certainly. The player consistently throws toward the top left of the dartboard,
and so the aim is biased (or inaccurate). Is there much random variation? No. The darts are rightly
clustered together, hence relatively immune from random variation. The player’s aim is therefore
precise.

Figure 2—4C shows darts that are not only widely scattered, but also systematically err in one direc-
tion. Thus, this player’s aim is not immune from either bias or random variation, making it biased
(inaccurate) and imprecise.

Figure 2—4D shows the ideal, both in darts and in inferential statistics. There is no systematic error
or significant random variation, so this aim is both accurate (unbiased) and precise.

Figure 2—5 shows the same principles in terms of four hypothetical random sampling distributions of
means. Each curve shows the result of taking a very large number of samples from the same popula-
tion and then plotting their means on a frequency distribution. Precision is shown by the narrowness
of each curve: as in all frequency distributions, the spread of the distribution around its mean reflects
its variability. A very spread-out curve has a high variability and a high standard error and therefore
provides an imprecise estimate of the true population mean. Accuracy is shown by the distance be-
tween the mean of the random sampling distribution of means (p;) and the true population mean
(). This is analogous to a darts player with an inaccurate aim and a considerable distance between
the average position of his or her darts and the bull’s eye.
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Distribution A in Figure 2-5 is a very spread-out random sampling distribution of means; thus, it pro-
vides an imprecise estimate of the true population mean. However, its mean does coincide with the
true population mean, and so it provides an accurate estimate of the true population mean. In other
words, the estimate that it provides is not biased, but it is subject to considerable random variation.
This is the type of result that would occur if the samples were truly random but small.

Distribution B is a narrow distribution, which therefore provides a precise estimate of the true pop-
ulation mean. Due to the low standard error, the widrh of the confidence interval would be narrow.
However, its mean lies a long way from the true population mean, so it will provide a biased estimate

Figure 2-5



28 High-Yield Biostatistics

of the true population mean. This is the kind of result that is produced by large but biased (i.e., not
truly random) samples.

Distribution C has the worst of both worlds: it is very spread out (having a high standard error) and
would therefore provide an imprecise estimate of the true population mean. Its mean lies a long way
from the true population mean, so its estimate is also biased. This would occur if the samples were
small and biased.

Distribution D is narrow, and therefore precise, and its mean lies at the same point as the true pop-
ulation mean, so it is also accurate. This ideal is the kind of distribution that would be obtained from
large and truly random samples; therefore, to achieve maximum precision and accuracy in inferential
statistics, samples should be large and truly random.

Estimating the standard error

So far it has been shown how to determine the probability that a random sample will have a mean
that is above or below a certain value, and it has been shown how the mean of a sample can be used
to estimate the mean of the population from which it was drawn, with a known degree of precision
and confidence. All this has been done by using z scores, which express the number of standard er-
rors by which a sample mean lies above or below the true population mean.

However, because standard error is found from the formula oy = o + \/?_1, we cannot calculate stan-
dard error unless we know @, the population standard deviation. In practice, however, o will not be
known; researchers hardly ever know the standard deviation of the population (and if they did, they
would probably not need to use inferential statistics anyway).

As a result, standard error cannot be calculated, and therefore z scores cannot be used. Instead, the
standard error can be estimated using data that are available from the sample alone. The resulting sta-
tistic is the estimated standard error of the mean, usually called estimated standard error (although,
confusingly, it is called standard error in many research articles); it is symbolized by sg, and it is found
by the formula

Estimated standard error of the mean

where S is the sample standard deviation, as defined in Chapter 1.

t scores

The estimated standard error is used to find a statistic, called ¢, that can be used in place of z. The t
score, rather than the z score, must be used when making inferences about means that are based on
estimates of population parameters (such as estimated standard error) rather than on the popularion
parameters themselves. The t score is sometimes known as the Student’s t. (Its inventor was employed
by Guinness breweries to perform quality control on the beer. Because of this situation, he could not
name the statistic after himself, but gave himself the pseudonym “Student.”)

The t score is calculated in much the same way as z. However, whereas z was expressed in terms of
the number of standard errors by which a sample mean lies above or below the population mean, ¢ is
expressed in terms of the number of estimated standard errors by which the sample mean lies above or
below the population mean. The formula for ¢ is therefore

s B

5=

»
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Compare this formula with the formula we used for z:

_X-u

Z
[

X

Just as z score tables give the proportions of the normal distribution that lie above and below any
given z score, so there are ¢ score tables that provide the same information for any given t score. How-
ever, there is one difference between these tables. Whereas the value of z for any given proportion of
the distribution is constant (e.g., 7 values of =1.96 always delineate the middle 95% of the distribu-
tion), the value of t for any given proportion is not constant—it varies from one sample to the next.
When the sample size is large (n > 100), the values of t and z are similar. As samples get smaller, ¢
and z scores become increasingly different.

Degrees of freedom and t tables

Table 2-1 is an abbreviated t score table that shows the values of t corresponding to different areas
under the normal distribution for various sample sizes. Tables of t values do not show sample size (n)
directly; instead, they express sample size in terms of degrees of freedom (df). For the purposes of
USMLE, degrees of freedom (df) can be defined as simply equal ton — 1. Therefore, to determine the
value of t (such that 95% of the population of t-statistics based on a sample size of 15 lies between —t
and +1t), one would look in the table for the appropriate value of t for df = 14 (14 being equal to n
— 1); this is sometimes written as t 4. Table 2—1 shows that this value is 2.145.

As n becomes larger (100 or more), the values of t are very close to the corresponding values of z. As
the middle column shows, for a df of 100, 95% of the distribution falls within t = %=1.984; while for
a df of oo this figure is 1.96, which is the same figure for 7 (see Table 1-3). In general, the value of t
that divides the central 95% of the distribution from the remaining 5% is in the region of 2, just as
it is for z. (One- and two-tailed tests are discussed in Chapter 3 in the section on Directional Hy-
potheses).

As an example of the use of t scores, we can repear the earlier task of estimating (with 95% confi-
dence) the true mean resting heart rate of a large population, basing the estimate on a random sam-
ple of people drawn from this population. This rime we will not make the unrealistic assumption that
the standard error is known.

As before, a random sample of 15 people is drawn, and it is found thar their mean heart rate (X)
is 74 beats/min. Assuming that the standard deviation of this sample is 8.2, the estimated stan-
dard error, o, can be calculated as follows:

s =

For a sample consisting of 15 people, the t tables will give the appropriate value of t (corre-
sponding to the middle 95% of the distribution) for df = 14 (i.e., n — 1).

Table 2—1 shows that this value is 2.145. This value is not very different from the “ballpark” 95% fig-
ure for z, which is 2. The 95% confidence intervals are therefore equal to the sample mean plus or
minus ¢ times the estimated standard error (i.e., X = ¢t X sg), which in this example is
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Table 2-1
Area in 2 tails .100 .050 .010
Tall 1 Tall 2
Area in 1 tail .050 .025 .005
Tall 1
df
1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2776 4.604
5 2.015 2,571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3865
9 1.833 2.262 3.250
10 1.812 2.228 3.169
11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1.771 2.160 3.012
14 1.761 2.145 2.977
15 1.753 2.131 2.947
25 1.708 2.060 2.787
50 1.8676 2.009 2.678
100 1.660 1.984 2.626
oo+ 1.645 1.960 2.576
;hisktable is not a complete listing of t-statistics values. Full tables may be found in most statistics text-
00Ks.

+ (2.145 X 2.2) = 69.281 and 78.719.

The sample mean therefore allows for the estimate that the true mean resting heart rate of this
population is 74 beats/min. One can be 95% confident that it lies between 69.281 and 78.719.

q‘\Elmlit o
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Because the figure for t for 95% confidence intervals is almost invariably going to be in
the region of 2 (Table 2-1), it should be noted that in general, one can be 95% confident
that the true mean of a population lies within approximately plus or minus two estimated stan-
dard errors of the mean of a random sample draun from that population.
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EXERCISES

Select the single best answer to the following questions, referring to the appropriate scenarios.

Questions 1-8

A researcher is interested in comparing the rates of obesity in different cities. He wants to start by
finding the mean weight of adult male New Yorkers.

or e

o o

gw

0 oo T

You would advise him to

start by trying to verify that adult male New Yorkers’ weights are normally distributed.

weigh every adult male New Yorker and calculate their mean weight.

draw a nonrandom sample of 1000 adult male New Yorkers, weigh them, and calculate the mean
weight of the sample.

draw a random sample of 10 adult male New Yorkers, weigh them, and calculate the mean weight
of the sample.

draw a random sample of 500 adult male New Yorkers, weigh them, and calculate the mean
weight of the sample.

Which of the following sampling plans is most likely to give an accurate but imprecise estimate
of the weight of adult male New Yorkers?

Weighing 5000 people randomly selected from a list of adult male registered voters in New York.
Weighing 100 people randomly selected from a list of adult male registered voters in New York.
Weighing 5000 people who were randomly selected from adult males jogging in Central Park.
Weighing 100 people who were randomly selected from adult males jogging in Central Park.

The researcher draws an unbiased sample of 101 adult male New Yorkers. Their mean weight is
72 kg, and the standard deviation is 15. The estimated standard error is therefore

impossible to calculate with the information given.
150.

1.5

square root of 1.

1215

If the estimated standard error is 1.5, the researcher can state that he is 95% confident thar the
true mean weight of all adult male New Yorkers lies between

66 and 78 k.
69 and 75 kg.
70.5 and 73.5 kg.

None of the above.

The widch of the 95% confidence interval of the researcher's estimate is

12 kg.
6 ke
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3 ke.
None of the above.

To halve the width of the confidence interval, the researcher would have to

weigh approximarely 50 people instead of 101.

weigh approximately 202 people instead of 101.

weigh approximately 303 people instead of 101.

weigh approximately 404 people instead of 101.

weigh the men in his original sample more precisely than he did.

By halving the width of the confidence interval, whar effect is produced on the researcher’s es-
timate of the population mean?

Precision is halved.
Precision is doubled.
Precision is quadrupled.
Bias is reduced.

Bias is increased.

Assume that the researcher had opted to weigh a random sample of adult males (n = 101) jog-
ging in Central Park, and that he found that their mean weight was 65 kg, with a standard de-
viation of 9. He calculates the estimated standard error and determines the 95% confidence in-
terval of his estimate of the population mean. Compared to the estimate obtained in the original
study above (Question 3), this new estimare will be

less precise and less accurate.
less precise and equally accurate.
more precise and more accurate.
less precise and more accurate.
more precise and less accurate.

Question 9

One hundred oncologists were asked to estimate the mean survival time of patients with a certain
type of tumor. There was very little random variation among their estimates, but their estimates
proved to be consistently very pessimistic. A study of actual patients with this disease revealed that
they lived, on average, 4 months longer than the oncologists estimated. Their estimate was

o

o

o

imprecise.

unbiased.

precise and biased.
imprecise and unbiased.
precise and unbiased.
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Hypothesis Testing

Chapter 2 showed how a statistic (such as the mean of a sample) can be used to estimate a parame-
ter (such as the mean of a population) with a known degree of confidence. This is an important use
of inferential statistics, but a more important use is hypothesis testing.

Hypothesis testing may seem complex at first, but the steps involved are actually very simple and will
be explained in this chapter. To test a hypothesis about a mean, the steps are as follows:

1. State the null and alternative hypotheses, H and H .

Select the decision criterion a (or “level of significance”).

Establish the critical values.

Draw a random sample from the population, and calculate the mean of that sample.
Calculate the standard deviation (S) and estimated standard error of the sample (s;).

Calculate the value of the test statistic ¢ that corresponds to the mean of the sample (t_,;.).

P - NENEC N G T

Compare the calculated value of t with the critical values of ¢, and then accept or reject the
null hypothesis.

STEP 1: STATE THE NULL AND ALTERNATIVE HYPOTHESES

Consider the following example. The dean of a medical school states that the school’s students are a
highly intelligent group with an average 1Q of 135. This claim is a hypothesis that can be tested; it is
called the null hypothesis, or Hy. It has this name because in most research it is the hypothesis for
which there is no difference between samples or populations being compared (e.g., that a new drug
produces no change compared with a placebo). If this hypothesis is rejected as false, then there is an
alternative hypothesis, H, which logically must be accepted. In the case of the school president’s
claim, the following hypotheses can be stated:

Null hypothesis, Hq: o = 135
Alternative hypothesis, H,: p # 135

One way of testing the null hypothesis would be to measure the IQ of every student in the school—
in other words, to test the entire population—but this would be expensive and time-consuming. It
would be more practical to draw a random sample of students, find their mean 1Q), and then draw an
inference from this sample.

Q2%
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STEP 2: SELECT THE DECISION CRITERION «

If the null hypothesis were correct, would the mean IQ of the sample of students be expected to be
exactly 1357 No, of course not. As shown in Chapter 2, sampling error will always cause the mean of
the sample to deviate from the mean of the population. For example, if the mean IQ of the sample
were 134, one might reasonably conclude that the null hypothesis was not contradicted, because sam-
pling error could easily permit a sample with this mean to have been drawn from a population with
a mean of 135. To reach a conclusion about the null hypothesis, it must therefore be decided at what
point is the difference between the sample mean and 135 not due to chance but due to the fact that the pop-
ulation mean is not really 135, as the null hypothesis claims?

This point must be set before the sample is drawn and the data are collected. Instead of setting it in
terms of the actual 1Q score, it is set in terms of probability. The probability level at which it is decided
that the null hypothesis is incorrect constitutes a criterion, or significance level, known as a (alpha).

As the random sampling distribution of means (Fig. 2-2) showed, it is unlikely that a random sam-
ple mean will be very different from the true population mean. If it is very different, lying far toward
one of the tails of the curve, it arouses suspicion that the sample was not drawn from the population
specified in the null hypothesis, but from a different population. [If a coin is tossed repeatedly and 5,
10, or 20 heads occur in a row, one would start to question the unstated assumption, or null hypoth-
esis, that it was a fair coin (i.e., H_: heads = tails in the population)]. In other words, the greater the
difference between the sample mean and the population mean specified by the null hypothesis, the
less probable it is that the sample really does come from the specified population. When this proba-
bility is very low, it can be concluded that the null hypothesis is incorrect.

How low does this probability need to be for the null hypothesis to be rejected as incorrect? By con-
vention, the null hypothesis will be rejected if the probability that the sample mean could have come
from the hypothesized population is less than or equal to .05; thus, the conventional level of e is .05.
Conversely, if the probability of obtaining the sample mean is greater than .05, the null hypothesis
will be accepted as correct. Although a may be set lower than the conventional .05 (for reasons which
will be shown later), it is not normally any higher than this.

STEP 3: ESTABLISH THE CRITICAL VALUES

In Chapter 2 it was shown that if a very large number of random samples are taken from any popula-
tion, their means form a normal distribution—the random sampling distribution of means—which
has a mean (p;) equal to the population mean (). It was also shown that one can state what ran-
dom sample means are so high or so low that they would occur in only 5% or fewer of all possible ran-
dom samples. This ability can now be put to use, because the problem of testing the null hypothesis
about the students’ mean 1Q involves stating which random sample means are so high or so low that
they would occur in only 5% (or fewer) of all random samples that could be drawn from a population
with a mean of 135.

If the sample mean falls inside the range within which 95% of random sample means would be ex-
pected to fall, the null hypothesis is accepted. This range is therefore called the area of acceptance.
If the sample mean falls outside this range, in the area of rejection, the null hypothesis is rejected,
and the alternative hypothesis is accepted.

The limits of this range are called the critical values, and they are established by referring to a table
of t scores.

In the current example, the following values can be calculated:
. The sample size is 10, so there are (n — 1) = 9 degrees of freedom.

. The table of t scores (Table 2—1) shows that when df = 9, the value of ¢ that divides
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+2.262. These are the critical values, which are written t_,, = £2.262.

.

Figure 3—1 shows the random sampling distribution of means for our hypothesized population with a
mean () of 135. It also shows the areas of rejection and acceptance defined by the critical values of
t that were just established. As shown, the hypothesized population mean is sometimes written p,, .

The following have now been established:

° the null and alternative hypotheses
. the criterion that will determine when the null hypothesis will be accepted or rejected
® the critical values of ¢ associated with this criterion

A random sample of students can now be drawn from the population; the tscore (t_,, ) associated with
their mean IQ can then be calculared and compared with the critical values of t. This is a t-test—a
very common test in medical literature.

STEP 4: DRAW A RANDOM SAMPLE FROM THE POPULATION AND CALCULATE
THE MEAN OF THAT SAMPLE

A random sample of 10 students is drawn; their IQs are as follows:
I8 s 1400000 13300 A28 00 1200000120000 336 w00 128 s o132 e 129
The mean (X) of this sample is 128.

STEP 5: CALCULATE THE STANDARD DEVIATION (S) AND ESTIMATED STAN-
DARD ERROR OF THE SAMPLE (s;)

To calculate the t score corresponding to the sample mean, the estimated standard error must first be
found. This is done as described in Chapter 2. The standard deviation (8) of this sample is calculated
and found to be 7.155. The estimated standard error (s) is then calculated as follows:

Hhyp= 195

Area of rejection
(0.025 of area)

Frequency

Area of acceptance
(0.95 of area)

Area of rejection
(0.025 of area)

SR i ] " s R T (o | | P PR
rcril =-2.262 0 lerit = +2.262
t score

Figure 3-1
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STEP 6: CALCULATE THE VALUE OF t THAT CORRESPONDS TO THE MEAN OF
THE SAMPLE (t,.¢)

Now that the estimated standard error has been determined, the t score corresponding to the sample
mean can be found. It is the number of estimated standard errors by which the sample mean lies above
or below the hypothesized population mean:

[:X_M'I-LJ
s_

_ 128-135
2.385

—2.935

So the sample mean (129) lies approximately 2.9 estimated standard errors below the hypothesized
population mean (135).

STEP 7: COMPARE THE CALCULATED VALUE OF t WITH THE CRITICAL VALUES
OF t, AND THEN ACCEPT OR REJECT THE NULL HYPOTHESIS

If the calculated value of ¢ associated with the sample mean falls at or beyond either of the critical
values, it is within one of the two areas of rejection.

Figure 3—2 shows that the t score in this example does fall within the lower area of rejection. There-
fore, the null hypothesis is rejected, and alternative hypothesis is accepted.

The reasoning behind this is as follows. The sample mean differs so much from the hypothesized pop-
ulation mean that the probability that it would have been obtained if the null hypothesis were true
is only .05 (or less). Because this probability is so low, it is concluded that the population mean is not
135. It can be said that the difference between the sample mean and the hypothesized population
mean is statistically significant, and that the null hypothesis has been rejected at the .05 level. This
would typically be reported as follows: “The hypothesis that the mean IQ of the population is 135 was
rejected, t = —2.935,df = 9, p = .05.”

If, on the other hand, the calculated value of t associated with the sample mean fell between the two
critical values, in the area of acceptance, the null hypothesis would be accepted instead. In such a
case, it would be said that the difference between the sample mean and the hypothesized population
mean failed to reach statistical significance (p > .05).

Z-TESTS

References to a “z-test” are sometimes made in medical literature. A z-test involves the same steps as
a t-test and can be used when the sample is large enough (n > 100) for the sample standard devia-
tion to provide a reliable estimate of the standard error. Although there are situations in which a
t-test can be used but a z-test cannort, there are no situations in which a z-test can be used but a t-test
cannot. Therefore, t-tests are the more important and widely used of the two.
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Hpyp = 135
g Area of rejection Area of acceptance Area of rejection
2 (0.025 of area) (0.95 of area) (0.025 of area)
T T | T T T T T T T T T | T T T
lor = -2.262 0 rcrit =+2.262
t score
tcalc =-2.935

Figure 3-2

THE MEANING OF STATISTICAL SIGNIFICANCE

\ELD . When a result is reported to be “significant at p = .05,” it merely means that the result
& © was unlikely to have occurred by chance—in this case, that the likelihood of the result
50 _f having occurred by chance is .05 or less. This does not necessarily mean that the result

is truly “significant” in the everyday meaning of the word—that it is important, nore-
worthy, or meaningful. Nor does it mean that it is necessarily clinically significant.

In the previous example, if the mean IQ of the sample of students was found to be 134, it is possible
(if the sample were large enough) that this mean could fall in the area of rejection, and so the null hy-
pothesis (. = 135) could be rejected. However, this would scarcely be an important or noteworthy
disproof of the dean’s claim about the students’ intelligence. (In fact, virtually any null hypothesis can
be rejected if the sample is sufficiently large, because there will almost always be some trivial difference
between the hypothesized mean and the sample mean. Studies using extremely large samples are there-
fore at risk of producing findings that are statistically significant but otherwise insignificant).

Similarly, a study of a diet drug versus a placebo might conclude that the drug was effective. Never-
theless, if the difference in weight was only 1 pound, this would not be a significant finding in the
usual meaning of the word, and would probably not lead to physicians prescribing the drug.

TYPE | AND TYPE Il ERRORS

A statement that a result is “significant at p = .05” means that an investigator can be 95% sure that
the result was not obtained by chance. It also means that there is a 5% probability that the result could
have been obtained by chance. Although the null hypothesis is being rejected, it could still be true:
there remains a 5% chance that the data did, in fact, come from the population specified by the null
hypothesis.!

A2 o Questions on types I and II errors will appear not only on Step 1, but also on Step 2, Step 3,

2 and even specialty board certification examinations.

guc;,

2
Ny
\f Rejecting the null hypothesis when it is true is a type 1 or “false-negative” error: a
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false-negative conclusion has been drawn about the null hypothesis. The probability that a type [ er-
ror is being made is in fact the value of p; because this value relates to the criterion o, a type I error
is also known as an alpha error.

QMELD . The opposite kind of error, accepting the null hypothesis when it is actually false (draw-
;}" © ing a “false-positive” conclusion) is a type II or beta error. Whereas the probability of
-‘i-\/ 2 making a type | error is a, the probability of making a type II error is B. Table 3—1 shows

al ; o : e
the four possible types of decisions that can be made on the basis of statistical tests.

The choice of an appropriate level for the criterion a therefore depends on rhe relative consequences
of making a type 1 or type 1l error. For example, if a study is expensive and time-consuming (and is
therefore unlikely to be repeated), yet has important practical implications, the researchers may wish
to establish a more stringent level of « (such as .01, .005, or even .001) to be more than 95% sure
that their conclusions are correct. This was done in the multimillion dollar Lipid Research Clinics
Coronary Primary Prevention Trial, whose planners stated that

since the time, magnitude, and costs of this study make it unlikely that it could ever be repeated,
it was essential that any observed benefit of total cholesterol lowering was a real one. Therefore,
o was set to .01 rather than the usual .05. (Lipid Research Clinics Program, 1979)

Although the criterion to be selected need not be .05, by convention it cannot be any higher. Re-
sults that do not quite reach the .05 level of probability are sometimes reported to “approach signifi-
cance” or to “show statistically significant trends.”

Many researchers do not state a predetermined criterion or report their results in terms of one; in-
stead, they report the actual probability that the obtained result could have occurred by chance if the
null hypothesis were true (e.g., “p = .015”). In these cases, the p value is more an “index of rarity”
than a true decision criterion. The researchers are showing how unlikely it is that a type [ error has
been made, even though they would have still rejected the null hypothesis if the outcome were only
significant at the .05 level.

POWER OF STATISTICAL TESTS

Although it is possible to guard against a type | error simply by using a more stringent (lower) level
of «, preventing a type Il error is not so easy. Because a type [ error involves accepting a false null
hypothesis, the ability of a statistical test to avoid a type Il error depends on its ability to detect a null
hypothesis that is false. This ability is called the power of the test, and it is equal to 1 — B: it is the
probability that a false null hypothesis will be rejected. Conventionally, a study is required to have a
power of 0.8 to be acceptable—in other words, a study that has a less than 80% chance of detecting
a false null hypothesis is generally judged to be unacceptable.

Calculating B and determining the power of a test is complex. Nevertheless, it is clear thar a rest’s
power, or ability to detect a false null hypothesis, will increase as:

° a increases (e.g., from .01 to .05). This will make the critical values of t less ex-
treme, thus increasing the size of the areas of rejection and making rejection of the
null hypothesis more likely. There will always be a trade-off berween type I and type
Il errors: increasing a reduces the chance of a type Il error, but it simultaneously in-
creases the chance of a type [ error.

. the size of the difference between the sample mean and the hypothesized popula-
tion mean increases (this is known as the effect size). In the preceding example, a
difference between a hypothesized population mean IQ of 135 and a sample mean
1Q of 100 would be detected much more easily (and hence the null hypothesis
would be rejected more easily) than a difference between a hypothesized IQ of 135
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ACTUAL SITUATION
H, True H, False

—wmm-

Type Il error
H, Accepted Correct (B)
False positive

Type | error
H, Rejected () Correct
False negative

—SrcwmD;

and a sample mean IQ of 128. The larger the difference, the more extreme the cal-
culated value of ¢.

. sampling error decreases. A lower sampling error means that the sample standard
deviation (S) is reduced, which will cause the estimated standard error (s;) to be
lower. Because ¢ is calculated in terms of estimated standard errors, this will make
the calculated value of t more extreme (whether in a positive or negative direc-
tion), increasing the likelihood that it falls in one of the areas of rejection.

. the sample size (n) increases; this reduces the estimared standard error (s), thereby
increasing the calculated value of t. Therefore, a large-scale study is more likely to
detect a false null hypothesis (particularly if the effect size is small) than is a small-
scale study. For example, if a coin is tossed 1000 times and results in 600 heads and
400 tails, one is much more able to reject the null hypothesis that the coin is a fair

ELD i G : : ,
> one than if the coin is tossed 10 times and 6 heads and 4 rails are obrained.

. S

3 % | |

3 . E Increasing the sample size is the most practical and important way of increasing the
power of a statistical test.

Researchers who dispute the findings of a study in which the null hypothesis is accepted, claiming
that it is an example of a type II error, may argue that the study’s sample was too small to detect a real
difference or effect. They may replicate the study using a larger sample to improve the likelihood of
getting statistically significant results that will allow them to reject the null hypothesis.

In practice, researchers try to predict the effect size before they begin a study, so that they can use a
sample size large enough to detect it. They do not simply guess, for instance, that 50 or 500 patients
will be needed to test a new drug. Ideally, all studies that report acceptance of the null hypothesis
should also report the power of the test used, so that the risk of a type Il error is made clear.

The concept of power can be explained by using the example of a military radar system that is being
used to detect a possible impending air attack. The null hypothesis is that there are no aircraft or mis-
siles approaching; the alternative hypothesis is that there are. Clearly, a powerful radar system is go-
ing to be more able to detect intruders than is a weak one.

What if the radar system is functioning at a very lower power, and the operators are not aware of this
fact? They watch their screens and report that the null hypothesis is correct—there are no aircraft or
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missiles approaching—but the power of their system is so low that they are in grear danger of mak-
ing a type 11, or false-positive, error. This danger is greater if the “effect size"—the difference between
the presence or absence of impending artackers—is likely to be low: a lone saboteur in a hang-glider
will only be detected by a very powerful system, while a low-powered system may be adequate to de-
tect a squadron of large bombers. So just as with a startistical test, the more subtle the phenomenon
being testing for, the more powerful the test needs to be.

On the other hand, a very powerful system—like a very powerful staristical rest—runs the risk of mak-
ing a type | error. A phenomenon so subtle as to be trivial, such as a flock of birds, may produce a signal,
which may lead the operators to reject the null hypothesis and conclude that an attack is on the way.

DIRECTIONAL HYPOTHESES

So far, the example of hypothesis testing has used a nondirectional alternative hypothesis, which
merely stated thar the population mean is not equal to 135, but it did not specify whether the popu-
lation mean is above or below this figure. This was appropriate because the medical school dean
claimed that the students’ mean IQ was 135. His claim (which constitutes the null hypothesis) could
legitimately be rejected if the sample mean IQ turned out to be significantly above or below 135.
Therefore, as Figure 3-2 showed, there were two areas of rejection, one above Fobyp and one below.

What if the dean had instead claimed that the students’ average [Q was at least 1357 This claim could
only be rejected if the sample mean IQ turned out to be significantly lower than 135. The null hy-
pothesis is now . = 135, and the alternative hypothesis must now be . < 135. The alternative hy-
pothesis is now a directional one, which specifies that the population mean lies in a particular direc-
tion with respect to the null hypothesis.

In this kind of situation, there are no longer two areas of rejection on the random sampling distribu-
tion of means. As Figure 3—-3 shows, there is now only one. If a remains at .05, the area of acceprance
(the area in which 95% of the means of possible samples drawn from the hypothesized population lie)
now extends down from the very top end of the distribution, leaving just one area of rejection—the
bottom 5% of the curve. The area of rejection now lies in only one tail of the distribution, rather than
in both tails.

The steps involved in conducting a t-test of this directional null hypothesis are exactly the same as
before, except that the critical value of ¢ is now different. The critical value now divides the bottom
5% tail of the distribution from the upper 95%, instead of dividing the middle 95% from two tails of
2.5% each. The appropriate column of Table 2—1 shows that the new critical value of t (for the same
df of 9) is —1.833, rather than the previous value of +2.262.

As Figure 3-3 shows, this new critical value is associated with only one tail of the distribution. Us-
ing this value therefore involves performing a one-tailed statistical test, due to the fact that the al-
ternative hypothesis is directional; previously, when the alternative hypothesis was nondirectional,
the test performed was a two-tailed test.

The critical value of t is less extreme for the one-tailed test (—1.833) than for the two-tailed test
(£2.262). Consequently, when a one-tailed test is used, a less extreme sample mean is able to exceed

the critical value and fall within the area of rejection, leading to rejection of the null hypothesis. As
a result of this, one-tailed tests are more powerful than two-tailed tests.

For example, if the mean IQ of the sample of 10 students were 130 (instead of 128), with the
same standard deviation (7.155) and the same estimated standard error (2.385) as before, the
value of t corresponding to this mean would be

130 — 135
2.385

= —2.096
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This score falls within the area of acceptance for a two-tailed test, but it falls within the area of
rejection for a one-tailed test, as shown in Figure 3-3. The dean’s claim could therefore poten-
tially be accepted or rejected, depending on how it is interpreted and which test is consequently
performed.

As this example shows, a researcher who wishes to reject the null hypothesis may sometimes find that
using a one-tailed rather than a two-tailed test allows a previously nonsignificant result to become
significant. For this reason it is important that one-tailed tests are only performed under the correct
conditions. The decision to use a one-tailed test must depend on the nature of the hypothesis being tested,
and should therefore be decided at the outset of the research, rather than being decided afterward accord-
ing to how the results turn out.

One-tailed tests can only be used when there is a directional alternative hypothesis. This means that
they may not be used unless results in only one direction are of interest, and the possibility of the re-
sults being in the opposite direction is of no interest or consequence to the researcher.

When testing a new drug, the normal null hypothesis is that the drug has no effect, so it will be
rejected if the drug turns out to have an effect too great to be due to chance, irrespective of
whether the effect is a positive one or a negative one. Although the researcher expects the drug
to produce an improvement in patients’ symptoms, this expectation does not permit the use of a
directional alternative hypothesis. The researcher can do this only if it is of no interest or con-
sequence if the drug actually makes patients worse—a claim that can almost never be made le-
gitimately in biomedical research.

TESTING FOR DIFFERENCES BETWEEN GROUPS

We have seen how a t-test can be used to test a hypothesis about a single mean. However, biomed-
ical research is often more complex than this: researchers commonly want to compare two means,
such as the effects of two different drugs or the mean survival times of patients receiving two differ-
ent treatments.

A slightly more complex version of the ¢-test can be used to test for a significant difference between
two means. The null hypothesis is that the two groups were drawn from populations with the same
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mean—in other words, that the two samples were in effect drawn from the same population, and that
there is no difference between them. The alternative hypothesis is that the rwo population means are
different:

Hotpa = pp
Hatma # g

Many research problems involve comparing more than two groups; for example, comparing the rreat-
ment outcomes of three groups of patients with depression—one group taking a placebo, another a
tricyclic antidepressant, the third a selective serotonin reuptake inhibitor (SSRI). If each group con-
sists of male and female patients, the researcher may also want to make comparisons between the
sexes, giving a total of six groups: three different treatment groups, with two sexes within each group.
Therefore, the null hypothesis is

Ho iy = g = e = pp = g = Bg

In theory, this hypothesis could be tested by multiple t-tests, comparing A with B, A with C, A with
D, A with E, A with F, B with C, and so on. However, this method has some important disadvantages:

. [t is rime-consuming because it involves performing 15 separate t-tests.

. The power of each test is relatively low because each test uses the elements in only
two groups, and not the sample as a whole.

. With an « of .05, each test has a .05 chance of producing a type | error; with 15
tests, the probability of at least one of them producing a type I error is unaccept-
ably high.

° The 15 tests will produce 15 separate specific answers (e.g., “men taking an SSRI
responded better than women taking a placebo™).

It would be more convenient if an overall answer were first obrained to see if there were any statisti-
cally significant differences in the data. Then, broad questions such as, “Is there a significant differ-
ence between the three treatments?” could be answered before finally looking for significant differ-
ences between subgroups. This is especially true if the researcher has some general expectations (e.g.,
that men with depression have a better prognosis than women with depression) but has no specific
expectations abourt differences between particular subgroups.

Fortunately, there is a technique that overcomes these problems: analysis of variance (or ANOVA).
Whereas a t-test is appropriate for making just one comparison (between rwo sample means, or be-
tween a sample mean and a hypothesized population mean), when more than one comparison is be-
ing made (i.e., when means of more than two groups are being compared), ANOVA is the appropri-
ate rechnique. Consequently, ANOVA is used very commonly.

ANALYSIS OF VARIANCE (ANOVA)

The actual computation of ANOVA is complex and is not required for the USMLE. Briefly, the logic
behind it is as follows. In any set of experimental results, such as the results of the study of antide-
pressant drugs in the previous section, there will be some variability. The total variability in the re-
sults is made up of rwo components:

1. The variability resulting from the known differences between the groups: the use of the
placebo, the tricyclic antidepressant, or the SSRI as well as the gender of the patient.



2. The ordinary random variability within each group that is to be expected in any set of data,
caused by sampling error, individual differences between the patients, and so on.

The essential question is this: can a significant proportion of the overall variability found in the re-
sults be attributed to the known differences between the groups or not!? If the variance between the
different groups is large in comparison with the random fluctuations found within the groups, then it
must be due to some difference between the groups above and beyond the random fluctuations. If the
experiment has been performed correctly, this difference must be due (in this example) to the gen-
der of the patients or the treatments that they were given, because there is no other nonrandom dif-
ference between the groups.

The Fratio
ANOVA compares variance by means of a simple ratio, which is called the F-ratio:

variance between groups

variance within groups

The resulting F statistic (F,,;.) is then compared with the critical value of F (F_.), obtained from F
tables in much the same way as was done with t. As with ¢, if the calculated value exceeds the criti-
cal value for the appropriate level of «, the null hypothesis will be rejected. An F-test is therefore a
test of the ratio of variances.

F-tests can also be used on their own, independently of the ANOVA technique, to test hypotheses
about variances. For example, two different vaccines (A and B) may produce the same mean anti-
body concentration, but one vaccine may produce levels that are more variable than the other. An
F-test would be used to establish if the difference in their variances is merely due to chance or is sta-
tistically significant. The null hypothesis would be 6%, = a?;.

In ANOVA, the F-test is used to establish whether a statistically significant difference exists in the
data being tested. It will show if there are significant sources of variability in the data above and be-
yond the expected random variability.

If the various experimental groups differ in terms of only one factor at a time—such as the type of
drug being used—a one-way ANOVA is used. If the variance between groups is sufficiently large,
compared with the variance within groups, for the F-ratio to reach significance, it would then be
known that drug type was a significant source of variation in the results.

On the other hand, if the various groups differ in terms of two factors at a time, then a two-way
ANOVA is performed. This is what would be required if the groups differ not only in terms of drug
type but also in terms of gender. This ANOVA will show not only if there are significant sources of
variability in the results—it will also show if this variability is attributable to one factor (drug type),
to the other factor (gender), or to the two factors in combination with each other.

If a single factor is found to have a significant effect, it is called a main effect. If a combination of fac-
tors has a significant effect, this is called an interaction effect. Interaction effects occur when the ef-
fect of two factors together differs from the sum of the individual effects of each alone.

Graphical presentations of ANOVA data

Main and interaction effects are more easily understood visually. In the example of the study of the
effects of SSRIs, tricyclics, and placebos on male and female patients with depression, assume that
the results show that the best outcomes were among the patients who took the tricyclics, followed by
those who took the SSRIs, and that the worst outcomes were among the patients who took the
placebo; also assume that there are no differences attriburable to the gender of the patients.
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Figure 3—4 shows these results. Provided the differences are large enough to reach statistical signifi-
cance, a two-way ANOVA would allow the conclusion that there is a main effect due to drug type,
that there is no effect due to patient gender, and that there is no effect due to an interaction between
drug type and patient gender.

Now assume thar in addition to these drug effects, female patients had better outcomes than male pa-
tients in each of the three treatment groups. Figure 3=5 illustrates this result; here there is a main ef-
fect of drug, a main effect of gender, and no interaction effect.

Now assume instead that the three different treatments all produced identical results, and yet the fe-
male patients still exhibited better outcomes within each of these treatment groups. Figure 3—6 shows
this result; here there is a main effect of gender but no main effect of drug and no interaction effect.

Figure 3-7 shows another possible result. The three treatment groups produce identical mean effects
when both sexes are considered together; the male and female patient groups have identical mean
outcomes when all three drugs are considered together; but there are strong effects associated with

particular combinations of gender and drug type.

In this situation, although there is no main effect of drug and no main effect of gender, there is, nev-
ertheless, a strong interaction effect of drug and gender (this would usually be reported as “a strong drug
X gender interaction”). Overall, the drugs have no effect, and gender has no effect, but there are
strong effects of particular combinations of drug and gender.

When the lines representing different groups on graphs of this kind are parallel, there are no inter-

Improved <

(7]

)

] — Tricyclic
? Unchanged -~ -~ SSRI
3 e Placebo
£

o

Worse -

Figure 3-5



Hypothesis Testing 45

Improved -

w

2 -
© —— Tricyclic
@ Unchanged -~ .= -- SSRI
g - . e Placebo
£

O

Worse -
Male Female
Figure 3-6

actions. When they are not parallel, an interaction effect is present (although it is not necessarily a
strong or statistically significant one). Interaction effects reach maximum strength when the lines are

at right angles to each other.
An example helps to understand the difference between main effects and interaction effects. Ask
yourself the following questions:

. [s it socially stigmatizing to wear a beard in public?
. Is it socially stigmatizing to wear lipstick in public?

The answer, in most cultures, is “It depends”—on whether we are talking about men or women.
Whenever the answer is “It depends,” an interaction effect is likely to be present. We cannot say
whether it is stigmatizing to wear a beard or lipstick in general—in other words, there is no main ef-
fect of beard- or lipstick-wearing on social stigmatization—but there clearly is an interaction berween
type of facial adornment and gender on social stigmatization. Men who wear lipstick and women who
wear beards are at risk of being stigmatized, even though there is nothing “wrong” with either lipstick
or beards in general. Again, when represented graphically (Figure 3-8), note that the lines are at right
angles to each other, signifying a strong interaction.
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NONPARAMETRIC AND DISTRIBUTION-FREE TESTS

The previous sections have dealt with t-, z-, and F-tests, which test hypotheses about means or vari-
ances. These tests share three common features:

. Their hypotheses refer to population parameters: the population mean (in the case
of t- and z-tests) or the population variance (in the case of F-tests). For this reason
such tests are called parametric tests.

° Their hypotheses concern interval or ratio scale data, such as weight, blood pressure,
1Q, per capita income, measures of clinical improvement, and so on.

. They make certain assumptions about the distribution of the dara of interest in the
population—principally, that the population data are normally distributed. (As was
shown earlier, the central limit theorem allows this assumption to be made, even
when little is known about the population distribution, provided that random sam-
ples of sufficient size are used).

There are other statistical techniques that do not share these features:

. They do not test hypotheses concerning parameters, and hence are known as non-
parametric tests.

e They do nor assume that the population is normally distributed, so they are also
called distribution-free tests.

° They are used to test nominal or ordinal scale data.

Such tests, however, have the disadvantage that they are generally less powerful than parametric tests.

Chi-square

The most important nonparametric test is the chi-square (x?) test, which is used for testing hy-
potheses about nominal scale data.

ELo . Chi-square is basically a test of proportions, telling us whether the proportions of ob-
‘f © servations falling in different categories differ significantly from the proportions that
- ! " el T
3 \/ I would be expected by chance.

For example, in tossing a coin 100 times, we would expect 50% (or 50) of the tosses to
fall in the category of heads and 50 to fall in the category of tails. If the result is 59 heads and 41 tails,
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Table 3-2
Number of Students Passing USMLE by Medical School
School A School B School C

Number Total 187
Passing 49 112 26
Number
Failing 2 7 8 Total 57
Total 61 149 34

chi-square would show whether this difference in proportion is too large to be expected by chance
(i.e., whether it is statistically significant).

As with other tests, chi-square involves calculating the test statistic (x*,.) according to a standard
formula and comparing it with the critical value (appropriate for the level of « selected) shown in
the published chi-square tables. These tables can be found in most statistics textbooks.

Chi-square is also used in more complicated nominal scale questions. For example, a study might com-
pare the USMLE pass rates of three different medical schools, as shown in Table 3-2. This kind of
table is a contingency table, which is the usual way of presenting this kind of data. It expresses the
idea that one variable (such as passing or failing the examination) may be contingent on the other
(such as which medical school one attended). The question that chi-square can answer is this: is there
a relationship between which school the student attended and passing or failing the examination?

NOTE

IMany statistics textbooks and researchers erroneously take this to mean that there is therefore a 5%
chance that the null hypothesis is in fact still true, although it is being rejected. The p or « value is
the probability that the data could have come from the population specified by the null hypothesis,
not the other way around (Hill, 1990).

EXERCISES

Select the single, best answer to the following questions.

I.  An investigation of the effectiveness of a new drug using chi-square reports x* = 4.6, p = .05.
This means that

if the drug were effective, the probability of this result is .05.

the researchers are 95% certain that the drug is ineffective.

if the drug were ineffective, the probability of this result is .05.

the study was not powerful enough to detect a real effect of the drug.
the result is not statistically significant

o0 o
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A study rejects the null hyporhesis that the mean duration of viral shedding in primary HSV-1
infections is 7 days, t = 2.935, df = 9, p < .05. This means that

5% of the cases did have a mean duration of viral shedding of 7 days.

the mean duration of viral shedding was 9 days.

there is a 5% chance that a case would have less than 7 days of viral shedding.

there is a 5% chance that the null hypothesis is being rejected incorrectly.

the sample size was only 10, which is unlikely to be large enough to allow a statistically signifi-
cant result to be obtained.

A chi-square test would be most appropriate for testing which one of the following hypotheses?

That the mean USMLE Step 1 score of Harvard students is greater than that of Stanford students.
That a smaller proportion of people who were immunized against chicken pox subsequently
develop zoster than those who were not immunized.

That the mean blood pressure of black and white male hypertensive patients taking ACE
inhibitors is the same as that of black and white female hypertensive patients raking ACE
inhibitors and thart of black and whire males and females taking diuretics and placebos.

That race interacts with the type of drug used to treat hypertension.

That the mean cost of treating a patient with coronary artery disease with angioplasty is greater
than the mean cost of providing medical treatment.

An analysis of variance (ANOVA) technique would be the most appropriate technique for
testing which one of the following hypotheses?

That the mean indebtedness on graduation is greater for students at private racther than public
medical schools.

That a smaller proportion of vegetarians rather than nonvegetarians develop colon cancer by age
70.

That the mean blood pressure of black and white male hypertensive patients raking ACE
inhibitors is that same as that of black and white female hypertensive patients taking ACE
inhibitors and that of black and white males and females taking diuretics and placebos.

That a larger proportion of black people than white people treated for hypertension with ACE
inhibitors suffer strokes.

That the mean length of hospital stay for patients admirted with pneumonia is greater under fee-
for-service insurance plans than capitated plans.

Questions 5-7

A medical student believes that interns get less sleep than the general population of young adults. He
decides to test this hypothesis by taking a random sample of 10 interns on 2 randomly selected days,
and asking them how many hours they slept the previous night. He then compares their mean number
of hours of sleep with that of the general population of young adults, which he assumes to be 8 hours
per night. He selects an alpha of .05.

All the following statements are true EXCEPT

H: interns’ mean sleep duration = 8; H,: interns’ mean sleep duration # 8.
Because there is no real reason to suppose that interns” hours of sleep are normally distributed, a
t-test would be inappropriate.
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The 95% confidence limits for his estimate of the true number of hours slept by interns is the
sample mean plus or minus approximately 2 times the estimated sample error.

A two-tailed test should be used.

The student has a 5% chance of making a type I error.

If he selected an alpha of 0.01, he would

be more likely to obtain a statistically significant result.

be less likely to make a type Il error.

be more likely to make a type I error.

be more confident of his findings if they were statistically significant.
have a more powerful study.

If his findings were not statistically significant, this result could be due to all of the following

EXCEPT

The sample size was too large.

The null hypothesis really was true.

The size of the difference between the interns’ number of hours sleep and 8 was too small to be
detected.

The study was lacking in power.



Correlational Techniques

Biomedical research often seeks to establish if there is a relationship berween two variables; for ex-
ample, is there a relationship between salt intake and blood pressure, or between cigarette smoking
and life expectancy? The methods used to do this are correlational techniques, which focus on the
“co-relatedness” of the two variables. There are two basic kinds of correlarional techniques:

° Correlation, which is used to establish and quantify the strength and direction of the
relationship between two variables.

. Regression, which is used to express the functional relationship berween two vari-
ables, so that the value of one variable can be predicted from knowledge of the other.

CORRELATION

Correlation simply expresses the strength and direction of the relationship between two variables in
terms of a correlation coefficient, signified by r. Values of r vary from —1 to +1; the strength of the
relationship is indicated by the size of the coefficient, while its direction is indicated by the sign.

A plus sign means that there is a positive correlation between the two variables—high values of one
variable (such as salt intake) are associated with high values of the other variable (such as blood pres-
sure). A minus sign means that there is a negative correlation between the two variables—high val-
ues of one variable (such as cigarette consumption) are associated with low values of the other (such
as life expectancy).

If there is a “perfect” linear relationship between the two variables, so that it is possible to know the
exact value of one variable from knowledge of the other variable, the correlation coefficient (r) will
be exactly plus or minus 1.00. If there is absolutely no relationship between the two variables, so that
it is impossible to know anything about one variable on the basis of knowledge of the other variable,
then the coefficient will be zero. Coefficients beyond *0.5 are typically regarded as strong, whereas
coefficients between zero and +0.5 are usually regarded as weak.

Scattergrams and bivariate distributions

The relationship between two correlated variables forms a bivariate distribution, which is commonly
presented graphically in the form of a scattergram. The first variable (salt intake, cigarette con-
sumption) is usually plotted on the horizontal (X) axis, and the second variable (blood pressure, life
expectancy) is plotred on the vertical (Y) axis. Each plotted data point represents one observation of
a pair of values, such as one patient’s salt intake and blood pressure, so the number of plotted points
is equal to the sample size n. Figure 4-1 shows four different scattergrams.

Determining a correlation coefficient involves mathematically finding the “line of best fit” to the
plotted data points. The relationship between the appearance of the scattergram and the correlation

50
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coefficient can therefore be understood by imagining how well a straight line could fit the plotted
points. In Figure 4-1A, for example, it is not possible to draw any straight line that would fit the plot-
ted points at all; therefore, the correlation coefficient is approximately zero. In Figure 4-1B, a straight
line would fit the plotted points petfectly—so the correlation coefficient is 1.00. Figure 4-1C shows
a strong negative correlation, with a correlation coefficient in the region of —0.8, and Figure 4-1D
shows a weak positive correlation in the region of +0.3.

Types of correlation coefficient

The two most commonly used correlation coefficients are the Pearson product-moment correlation,
which is used for interval or ratio scale data, and the Spearman rank-order correlation, which is used
for ordinal scale data. The latter is sometimes symbolized by the letter p (rtho). Pearson's r would there-
fore be used (for example) to express the association between salt intake and blood pressure (which
are both ratio scale data), whereas Spearman’s p would be used to express the association between
birth order and class position at school (which are both ordinal scale data).

Both these correlational techniques are linear: they evaluate the strength of a “straight line” rela-
tionship between the two variables. So if there is a very strong nonlinear relationship between two
variables, the Pearson or Spearman correlation coefficients will be an underestimate of the true
strength of the relationship.

Figure 4-2 illustrates such a situation. A drug has a strong effect at medium dosage levels but very
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Figure 4-2 A strong nonlinear relationship.

weak effects at very high or very low doses. Because the relationship between dose and effect is so
nonlinear, the Pearson r correlation coefficient is low, even though there is actually a very strong re-
lationship between the two variables. Visual inspection of scattergrams is therefore invaluable in
identifying relationships of this sort. More advanced nonlinear correlational techniques can be used
to quantify correlations of this kind.

Coefficient of determination

Once a correlation coefficient has been determined, the coefficient of determination can be found
by squaring the value of r. The coefficient of determination, symbolized by %, expresses the proportion
of the variance in one variable that is accounted for, or “explained,” by the variance in the other vari-
able. So if a study finds a correlation (r) of 0.40 between salt intake and blood pressure, it could be
concluded that 0.40 X0.40 = 0.16, or 16% of the variance in blood pressure in this study is accounted
for by variance in salt intake. This does not necessarily mean that the changes in salt intake caused
the change in blood pressure.

QELR A correlation between two variables does not demonstrate a causal relationship be-
2 tween the two variables, no matter how strong it is. Correlation is merely a measure of
\/ 5 the variables’ statistical association, not of their causal relationship. Inferring a causal
relationship between two variables on the basis of a correlation is a common and fundamental

error.

&
2
z

Furthermore, the fact that a correlation is present between two variables in a sample does not neces-
sarily mean that the correlation actually exists in the population. When a correlation has been found
between two variables in a sample, the researcher will normally wish to test the null hypothesis that
there is no correlation between the two variables (i.e., that r = Q) in the population. This is done
with a special form of t-test.

REGRESSION

[f two variables are highly correlated, it then becomes possible ro predict the value of one of them (the
dependent variable) from the value of other (the independent variable) by using regression tech-
niques. In simple linear regression the value of one variable (X) is used to predict the value of the
other variable (Y) by means of a simple linear mathemarical function, the regression equation, which
quantifies the straight-line relationship between the two variables. This straight line, or regression
line, is actually the same “line of best fit" to the scattergram as that used in calculating the correla-
tion coefficient.
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The simple linear regression equation is the same as the equation for any straight line:
Expected value of Y = a + bX

where a is a constant, known as the “intercept constant” because it is the point on the Y
axis where the Y axis is intercepted by the regression line;

b is the slope of the regression line, and is known as the regression coefficient; and

X is the value of the variable X.

Once the values of a and b have been established, the expected value of Y can be predicted for any
given value of X. For example, Zito and Reid (1978) showed that the hepatic clearance rate of lido-
caine (Y, in ml/min/kg) can be predicted from the hepatic clearance rate of indocyanine green dye
(X, in ml/fmin/kg), according to the equation Y = 0.30 + 1.07X, thus enabling anesthesiologists to
reduce the risk of lidocaine overdosage by testing clearance of the dye.

Multiple regression

Orther techniques generate multiple regression equations, in which more than one variable is used
to predict the expected value of Y, thus increasing the overall percentage of variance in Y that can
be accounted for. For example, Rubin et al. (1986) found that the birth weight of a baby (Y, in grams)
can be partly predicted from the number of cigarettes smoked on a daily basis by both the baby’s
mother (X,) and the baby’s father (X;) according to the multiple regression equation Y = 3385 —
9X, — 6X,. Other techniques are available to quantify nonlinear relationships among multiple vari-
ables. As with correlation, however, it is important to remember that the existence of this kind of sta-
tistical association is not in itself evidence of causality.

CHOOSING AN APPROPRIATE INFERENTIAL OR CORRELATIONAL TECHNIQUE

The basic choice of an appropriate statistical technique for a particular research problem is deter-
mined by two factors: the scale of measurement and the type of question being asked. USMLE will
require familiarity with only those basic techniques that have been covered here (although there are
many others). Their uses will now be summarized, as illustrated in Table 4-1.

Concerning nominal scale data, only one kind of question has been discussed: do the proportions of
observations falling in different categories differ significantly from the proportions that would be ex-
pected by chance? The technique for such questions is the chi-square test.

Regarding ordinal scale data, only one kind of question has been mentioned: is there an association
between ordinal position on one ranking and ordinal position on another ranking? The appropriate
technique here is the Spearman rank-order correlation.

For interval or ratio scale data, three general kinds of questions have been discussed:
1. Questions concerning means;
e What is the true mean of the population?
¢ Is one sample mean significantly different from one or more other sample means?
2. Questions concerning variances:
o  Are the variances in two samples significantly different?
3. Questions concerning association:

* To whart degree are rwo variables correlared?
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Table 4-1
SCALE OF DATA
Nominal Ordinal Interval or Ratio

Q
U Differences in 2
g Proportion X
S
T One or two ttest
o means (or ztest if n = 100)
N
S  More than two ANOVA

means with Ftests
c
g Variances Ftest
(E: Association Spearman p Pearson r
R
N Predicting the
I value of a Regression
g variable

Three ways of answering questions concerning means of interval or ratio scale data have been exam-
ined: ¢t-tests, z-tests, and ANOVA:

. When the question involves only one or two means, or making only one compari-
son, a t-test will normally be used. Therefore, questions concerning estimating a
population mean, testing a hypothesis about a population mean, or comparing two
sample means with each other will normally be answered by using t. Alternatively,
provided that n > 100, or if the standard deviation of the population is known, a
z-test may be used with virtually identical results.

. When the question involves more than two means, or making more than one com-
parison, the appropriate technique is analysis of variance (ANOVA), together
with F-tests.

One way of answering questions about variances has been covered: the F-test of significant differences
between variances.

Two ways of assessing the degree of association berween two interval or ratio scale variables have been
discussed. To evaluate the strength and direction of the relationship, Pearson product-moment cor-
relation is used, together with a form of t-test to test the null hypothesis that the relationship does
not exist in the population. To make predictions about the value of one variable on the basis of the
other, regression techniques are used.
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Table 4-1 summarizes the range of inferential and correlational techniques that have
been covered. This table should be memorized to answer typical USMLE questions that
require choosing the correct test or technique for a given research situation.

EXERCISES

Select the single, best answer to the following questions.

C o0 o

N S

S

A medical school professor finds that students’ final examination grades correlate with the num-
ber of times they attended class, Pearson r = 0.8, p = .001. This means that

a student will improve his or her grade by attending class more.

64% of the variation in final grades is accounted for by class attendance.
the correlation is too low to be of significance.

the correlation is a weak one.

the correlation is nonlinear.

A lecturer states that the correlation coefficient between prefrontal blood flow under cognitive
load and the severity of psychotic symptoms in schizophrenic patients is —1.24. You can there-
fore conclude that

prefrontal blood flow under cognitive load is a good predictor of the severity of psychotic symp-
toms in schizophrenic patients.

prefrontal blood flow under cognitive load accounts for a large proportion of the variance in psy-
chotic symptoms in schizophrenic patients.

low prefrontal blood flow is in some way a cause or partial cause of psychosis.

psychosis or schizophrenia is in some way a cause or partial cause of low prefrontal blood flow
under cognitive load.

the lecturer has reported the correlation coefficient incorrectly.

An investigator into the life expectancy of IV drug abusers divides a sample of patients into HIV-
positive and HIV-negative groups. What type of data does this division constitute?

Nominal
Ordinal
Interval
Ratio
Continuous

The investigator in Question 3 finds that 169 of 212 HIV-positive IV drug abusers are no longer
alive after 5 years, while only 64 of 439 HIV-negative 1V drug abusers have died during this time.
What statistical technique should he use to test the null hypothesis that there is no difference
berween these proportions?

t-test

Correlation with associated t-test
Chi-square

Analysis of variance (ANOVA)
F-test
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A researcher wishes to compare the effects of four different antiretroviral drug combinations on
the survival time of two groups of patients with AIDS; one group are IV drug abusers, the other
are infants infected in utero. Each of these groups is divided into four subgroups; each subgroup
is given a different drug combination. Which statistical technique would be most appropriate for
analyzing the results of this study?

Analysis of variance (ANOVA)
t-test

F-test

Correlation with associated t-test
Chi-square

A researcher claims that USMLE Step 1 scores can be predicted using the following equation:
Score (%) = 29 + 0.35X, + 1.6X, + 3.3X,

where X, _ student’s IQ, X, = number of hours of daily study for the past year, and X; = student’s
GPA at medical school. What statistical technique did the researcher use to arrive at this equation?

Spearman rank-order correlation
Analysis of variance (ANOVA)
Regression

Chi-square

t-test

A study finds that there is a correlation of +0.7 between self-reported work satisfaction and life
expectancy in a random sample of 5000 Americans (p = 0.01). This means that

work satisfaction is one factor involved in increasing one’s life expectancy.

there is a strong statistically significant positive association between work satisfaction and life
expectancy.

70% of people who enjoy their work have an above-average life expectancy.

to live longer, one should try to enjoy one’s work.

70% of the variability in life expectancy in this sample can be accounted for by work satisfac-
tion.

In a sample of 200 patients with hypertension who are currently taking antihypertensive med-
ication, it is found that blood pressure and antihypertensive drug dosage correlate r = —0.3, p <
.05. It is correct to conclude all of the following EXCEPT

the relationship berween drug dosage and blood pressure is unlikely to be due to chance.

the relationship between drug dosage and blood pressure is a weak negative one.

although other factors are clearly involved also, drug dosage is one factor causing these patients’
blood pressures to be reduced.

drug dosage accounts for 9% of the variation in blood pressures.

it would be possible to make a prediction of a patient’s blood pressure from knowledge of their
drug dosage by using regression rechniques.

A study investigates two new drugs that are hypothesized to improve the mean level of recall in
patients with Alzheimer’s disease. A sample of 1000 patients (500 males, 500 females) are ran-
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domly allocared to receive Drug A, Drug B, or a placebo. After 3 months of treatment, all the
patients’ recall ability is tested. Males’ recall is improved by Drug A but is made worse by Drug
B, while the converse is true for females. Overall, however, there is no difference between the
three treatments or between the two genders. It would be correct to report

no effects.

a drug X gender interaction.

a main effect of age.

a main effect of gender.

a drug X gender interaction and a main effect of gender.



Research Methods

Medical researchers typically aim to discover the relationship between one or more events or char-
acteristics (such as being exposed to a toxic substance, having a family history of a certain disease, or
taking a certain drug) and others (such as contracting or recovering from a certain illness). All these
events or characteristics are called variables.

[n any type of research, variables may be either dependent or independent. Independent variables are
presumed to be the causes of changes in other variables, which are called the dependent variables be-
cause they are presumed to depend on the values of the independent variables. Research typically at-
tempts to uncover the relationship between independent variables and dependent variables.

EXPERIMENTAL STUDIES

The relationship berween dependent and independent variables can be investigated in two ways:

. Experimental studies, in which the researcher exercises control over the indepen-
dent variables, deliberately manipulating them; experimental studies are sometimes
called intervention studies.

. Nonexperimental studies, in which nature is simply allowed to take its course; non-
experimental studies are also called observational studies.

For example, in studying the effectiveness of a particular drug for a certain disease, the use or
non-use of the drug is the independent variable, and the resulting severity of the disease is the
dependent variable, because it is presumed to depend on whether the drug was used or not.

In an experimental investigation of the drug’s effectiveness, the investigator would intervene, giving
the drug to one group of patients but not to another group. In a nonexperimental investigation, the re-
searcher would simply observe different patients who had or had not taken the drug in the normal
course of events.

As the example suggests, the hallmark of the experimental method is manipulation or intervention.
Properly conducted experiments are the most powerful way of establishing cause-and-effect relation-
ships between independent and dependent variables. Nevertheless, they have disadvanrages: they
may be unethical if they expose subjects to the risk of physical or mental harm, and they are imprac-
tical if the cause-effect relarionship is one thar rakes a long time ro appear.

If it is hypothesized that it takes 15 years of heavy alcohol drinking to cause cirrhosis of the liver,
it would be unethical and impractical to conduct an experiment by administering heavy doses of
alcohol to subjects for this length of time to observe the outcome. On the other hand, a re-
searcher could investigate this hypothesis observationally by inding people who have done this
in the ordinary course of events.

58
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Clinical trials

The experimental method in medical research commonly takes the form of the clinical trial, which
attempts to evaluate the effects of a treatment. Clinical trials aim to isolate one factor (such as use of
a drug) and examine its contribution to patients” health by holding all other factors as constant as
possible. Apart from manipulation or intervention, clinical trials typically have two other character-
istics: they utilize control groups and involve randomization. Hence, they are often termed ran-
domized controlled clinical trials.

Control groups

Patients in clinical trials are divided into two general groups:
. the experimental group, which is given the treatment under investigation; and

. the control group, which is treated in exactly the same way except that it is not
given the treatment.

Any difference that appears between the two groups at the end of the study can then be attributed to
the treatment under investigation. Control groups therefore help to eliminate alternative explana-
tions for a study’s results.

For example, if a drug eliminates all symptoms of an illness in a group of patients in 1 month, it
may be that the symptoms would have disappeared spontaneously over this time even if the drug
had not been used. But if a similar control group of patients did not receive the drug and expe-
rienced no improvement in their symptoms, this alternative explanation is untenable.

There are two main types of control groups used in medical research:

e The no-treatment control group, which is the type used in the previous example:
the control group patients receive no treatment at all. This leaves open the possi-
bility that the patients whose symptoms were removed by the drug were respond-
ing not to the specific pharmacologic properties of the drug, but to the nonspecific
placebo effect that is part of any treatment.

. The placebo control group, who are given an inert placebic treatment, allowing the
elimination of the explanation that patients in the treatment group who improved
were responding to the placebic component of the treatment; so the effectiveness
of the drug would have to be attributed to its pharmacologic properties.

In studies of this kind it is obviously important that patients do not know if they are receiving the
real drug or the placebo. If patients taking the placebo knew that they were not receiving the real
drug, the placebo effect would probably be greatly reduced or eliminated.

It is also important that the physicians or nurses administering the drug and the researchers who as-
sess the patients’ outcomes do not know which patients are taking the drug and which are taking the
placebo. If they did, this knowledge could cause conscious or unconscious bias that might affect their
interactions with and evaluations of the patients. The patients and all those involved with them in
the conduct of the experiment should therefore be “blind” as to which patients are in which group.
These kinds of studies are therefore called double-blind studies. However, it is not always possible to
perform a double-blind study.

For example, in an experiment comparing the effectiveness of a drug versus a surgical procedure,
it would be hard to keep the patient “blind” as to which treatment he or she received (although
studies have been done in which patients under general anesthesia underwent “sham” surgery).
However, it would be possible for the outcome to be measured by a “blind” rater, who might per-



60 High-Yield Biostatistics

form laboratory tests or interviews with the patient without knowing to which group the patient
belonged. Such a study would be called a single-blind study.

Under some circumstances, truly controlled experiments may not be possible. In research on the ef-
fectiveness of psychotherapy, for example, patients who are placed in a no-treatment control group
may well receive help from friends, family, clergy, self-help books, and so on, and would therefore not
constitute a true no-treatment control. In this case, the study would be called a partially controlled
clinical trial.

Controlled experiments pose ethical problems if there is good reason to believe thar the rreatment
under investigation is either a beneficial or a harmful one:

. In the 1950s, experiments on the effects of oxygen on premature babies were op-
posed on the grounds that the control group would be deprived of a beneficial treat-
ment; later, when it became strongly suspected that excessive oxygen was a cause
of a type of blindness (retrolental fibroplasia), similar experiments were opposed be-
cause the experimental group might be subjected to a harmful treatment.

. In recent years, a number of drug trials have been cut short because the drug under
investigation appeared to be so effective that it was thought unethical to continue
depriving the control group patients of the drug (e.g., zidovudine for AIDS, ta-
moxifen for breast cancer prevention).

Randomization

Randomization means that patients are randomly assigned to different groups (i.e., to the experi-
mental and control groups) to equalize the effects of extraneous variables.

In a controlled trial of a new drug, it would be absurd to assign all the male patients or all the patients
with less severe disease to the drug group, and all the females or all the patients with more severe dis-
ease to the control group. If this were done, any difference in outcome between the two groups could
be attributed to differences between the sexes or pretrearment severiries of the disease in the rwo
groups rather than to the drug itself. In this kind of situation, patient gender and disease severity are
called confounding variables, because they contribute differently and inextricably to the two groups.
To avoid confounding effects, patients are normally assigned randomly to the rwo groups, so that the
different independent variables (in this case, gender, disease severity, and receiving the drug) are not
systematically related.

Allocating patients randomly to the different experimental groups guards against bias. True random-
ization means that the groups should be similar with respect to gender, disease severity, age, occupa-
tion, and any other variable that may differentially affect response to the experimental intervention.

Matching

Randomization cannot guarantee that the experimental and control groups are similar in all important
ways. An alternative way of doing this is to use matching: each patient in the experimental group is paired
with a parient in the control group who matches him or her closely on all relevant characteristics. If gen-
der, race, and age were important factors influencing the course of the disease being studied, each exper-
imental patient would be matched with a control patient of the same gender, race, and age. Thus, any
resulting differences between the two groups could not be attributed to differences in gender, race, or age.

Stratified randomization

This is a combination of randomization and matching techniques. The population under study is first
divided, or stratified, into subgroups that are internally homogeneous with respect to the important
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factors (e.g., race, age, disease severity). Equal numbers of patients from each subgroup are then ran-
domly allocated to the experimental and control groups. The two groups are therefore similar, but
their exact membership is still a result of randomization.

Experimental designs

In the studies mentioned so far, comparisons are made between patients (or subjects) in one group
and patients in the other group; these studies are therefore called between-subjects designs. Alter-
natively, each patient can be used as his or her own control, which means that comparisons are be-
ing made within each subject, a within-subjects design, and the control group is a same-subject con-
trol group. This method solves the problem of achieving comparability between the control and
experimental groups.

A common type of research using the within-subjects approach is the crossover design. Here half the
patients receive the placebo for a period, followed by the experimental trearment; the other half re-
ceive the treatment first, then the placebo. If there is a danger of a “carryover” effect (for example, if
the rrearment is a drug that may continue to have some effecr after it is withdrawn), then there can
be a washout period in between the drug and placebo phases, during which no treatment is given.

Figure 5-1 illustrates a crossover design with washout. One group of patients receives the drug for 1
month and then “crosses over” to receive the placebo after 1 month’s washout. The other group fol-
lows this pattern in reverse order. The efficacy of the drug is determined by comparing the effects of
the drug and placebo within each patient. This kind of design is also called a repeated measures de-
sign, because the measurements (of the dependent variable, such as the severity of the patients’ symp-
toms) are repeated within each patient at different times, and results are analyzed by comparing the
measurements that have been repeated on each patient.

NONEXPERIMENTAL STUDIES

Nonexperimental (or observational) studies fall into two general classes: descriptive studies and an-
alytic studies.

Descriptive studies

These aim to describe the occurrence and distribution of disease or other phenomena. They do not
try to offer explanations or test a theory or a hypothesis. They merely attemprt to generate a descrip-
tion of the frequency of the disease or other phenomenon of interest according to the places, times,
and people involved. These studies will use descriptive statistics but not inferential statistics.

Descriptive studies are often the first method used to study a particular disease—hence, they are also
called exploratory studies—and they may serve to generarte hypotheses for analyrtic studies ro test. Well-

1st Month 2nd Month 3rd Month

Patient Group A

Patient Group B

Figure 5-1
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known examples of modern descriprive studies include those of Legionnaire’s disease following its first
recognized outbreak in 1976, and early studies of AIDS showing that male homosexuals, intravenous
drug abusers, and persons with hemophilia were at risk. In both these cases, the true nature of the dis-
ease was unknown at the time, but the findings of descriptive studies generated useful hypotheses.

Analytic studies

These aim to test hypotheses or to provide explanations about a disease or other phenomena—hy-
potheses or explanations that are often drawn from earlier descriptive studies. They therefore use in-
ferential statistics to test hypotheses.

Descriptive and analytic studies are not always entirely distinguishable. For example, a large-scale de-
scriptive study may provide such clear data that it may provide an answer to questions or give clear
support to a particular hypothesis.

Nonexperimental designs

Descriptive or analytic studies use one of four principal research designs: they may be cohort studies,
case-control studies, case series studies, or prevalence surveys.

Cohort studies

Cohort studies focus on factors related to the development of a disease. A cohort (a group of people)
that does not have the disease of interest is selected and then observed for an extended period. Some
members of the cohort will already have been exposed to a suspected risk factor for the disease, and
others will eventually become exposed; by following them all, the relationship between the risk fac-
tors and the eventual outcomes can be seen. This kind of study therefore allows the incidence and
natural history of a disease to be studied.

Cohort studies may be loosely termed follow-up or longitudinal studies because they follow people
over a prolonged period, tracing any changes through repeated observation. They are also called
prospective studies because people are followed forward from a particular point in time, so the re-
searcher is “prospecting” or looking for data about events that are yet to happen. In addition, cohort
studies are sometimes called incidence studies because they look for the incidence of new cases of the
disease over time.

A famous example of a cohort study is the Framingham Study, which was begun in 1949. This
started with a cohort of more than 5000 people in Framingham, Massachusetts, who were free
of coronary heart disease (CHD). The individuals in the cohort were reexamined every 2 years
for more than 30 years. This study succeeded in identifying the major physical risk factors for

CHD.

Another example is the Western Collaborative Group Study (WCGS), which followed a cohorr of
more than 5000 heart discase-free California males for 7 years, showing that type A personality was
strongly associated with increased risk of CHD. (This study has subsequently been extended to a 21-
year follow-up, with somewhat contradictory results.)

ELD . Cohort studies have a number of significant advantages:

V4

1. When a true experiment cannot be conducted (whether for ethical or practical reasons), co-
hort studies are the best form of investigation; their indings are often extremely valuable.

niGy
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They are the only method that can establish the absolute risk of contracting a disease, and
they help to answer one of the most clinically relevant questions: if someone is exposed to
a certain suspected risk factor, is that person more likely to contract the disease? Cohort stud-
ies may also reveal the existence of protective factors, such as exercise and diet.

Because cohort studies are prospective, the assessment of risk factors in these studies is unbiased
by the outcome. If the Framingham Study were retrospective, for example, people’s recollection
of their diet and smoking habits could have been biased by the fact that they already have CHD
(this effect is known as recall bias). In addition, the chronologic relationship between the risk
factors and the disease is clear; if the WCGS were retrospective, it might be unclear whether
people developed a type A petsonality style after contracting CHD, rather than before.

For the individuals in a cohort who ultimately contract the disease of interest, data con-
cerning their exposure to suspected risk factors have already been collected. However, in a
retrospective study this may not be possible. Again, if the Framingham Study were retro-
spective, it might have been impossible to obtain accurate information about the diet and
smoking habits of people who had already died. If the WCGS were retrospective, it would
have been difficult if not impossible to assess the personality of people who had already died.
Other types of studies are often unable to include people who die of the disease in question—
often the most important people to study.

Information about suspected risk factors collected in cohort studies can be used to examine
the relationship between these risk factors and many diseases; therefore, a study designed as
an analytic investigation of one disease may simultaneously serve as a valuable descriptive
study of several other diseases.

Cohort studies have some important disadvantages:

1.

They are time-consuming, laborious, and expensive to conduct; members of the cohort must
be followed for a long time (often for many years) before a sufficient number of them get the
disease of interest. It will often be very expensive and difficulr to keep track of a large num-
ber of people for several years, and it may be many years before results are produced, espe-
cially in the case of diseases that take a long time to appear after exposure to a risk factor.

They may be impractical for rare diseases. For example, if 1 case of a disease occurs in every
10,000 people, then 100,000 people will have to be followed for 10 cases to eventually ap-
pear. However, if a particular cohort with a high rate of the disease exists, such as an occu-
pational cohort, a disease that is rare in the general population can still be studied by this
method. Classic examples of this include studies of scrotal cancer among chimney sweeps
and bladder cancer among dye workers..

Case-control studies

Whereas cohort studies examine people who are initially free of the disease of interest, case-control
studies compare people who do have the disease (the cases) with otherwise similar people who do not
have the disease (the controls).

Case-control studies start with the outcome, or dependent variable (the presence or absence of the
disease). They then look back into the past for possible independent variables that may have caused
the disease, to see if a possible risk factor was present more frequently in cases than controls. Hence,
they are also called retrospective studies.

One classic exploratory case-control study uncovered the relationship between maternal expo-
sure to diethylstilbestrol (DES) and carcinoma of the vagina in young women (Herbst et al.,
1971). Eight patients with this rare cancer were each compared with four matched cancer-free
controls. Looking back at their individual and maternal histories, no significant differences ap-
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peared between the cases and the controls on a wide range of variables, but it was found that
mothers of seven of the eight cases had taken DES in early pregnancy, 15 to 20 years earlier, while
none of the 32 controls’ mothers had done so.

\ELD . Case-control studies offer some significant advantages:

4

1. They can be performed fairly quickly and cheaply (especially in comparison with cohort
studies), even for rare diseases or diseases that take a long time to appear (as the vaginal car-
cinoma example shows). Because of this, case-control studies are the most important way of
investigating rare diseases and are typically used in the early exploration of a disease.

“IGJ"
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2. They require comparatively few subjects.
3. They allow multiple potential causes of a disease to be investigared.
Case-control studies also have a number of disadvantages and are particularly subject to bias:

1. People’s recall of their past behaviors or risk factor exposure may be biased by the fact that
they now have the disease.

2. The only cases that can be investigated are people who have been identified and diagnosed; un-
diagnosed or asymptomatic cases are missed by this kind of study. People who have already died
of the disease cannot be questioned about their past behaviors and exposure to risk factors.

3. Selecting a comparable control group is a difficult task that relies entirely on the researcher’s
judgment.

4. Case-control studies cannot determine the rates or the risk of the disease in exposed and
nonexposed people.

5. They cannot prove a cause-effect relationship.

Case series studies

A case series simply describes the presentation of a disease in a number of patients. It does not fol-
low the patients for a period, and it uses no control or comparison group. Therefore, it cannot estab-
lish a cause-effect relationship, and its validity is entirely a matter for the reader to decide. A report
that 8 of a series of 10 patients with a certain disease have a history of exposure to a particular risk
factor may be judged to be extremely useful or almost worthless.

Despite these serious shortcomings, case series studies are commonly used to present new information
about patients with rare diseases, and they may stimulate new hypotheses. They can be done by almost
any clinician who carefully observes and records patient information. A case report is a special form of
case series in which only one patient is described—this too may be very valuable or virtually worthless.

Prevalence surveys

A prevalence survey or community survey is a survey of a whole population. It assesses the propor-
tion of people with a certain disease (this is the prevalence of the disease; see Fig. 6-1) and examines
the relationship between the disease and other characteristics of the popularion. Because prevalence
surveys are based on a single examination of the population at a particular point in time and do not
follow the population over time, they are also called cross-sectional studies, in distinction to longi-
tudinal (cohort) studies.



Prevalence surveys are common in the medical literature. Examples include a study of the prevalence
of CHD in a community, which could be compared with a different community with different dietary
or exercise habits. Another example is a study examining the prevalence of respiratory disease in a
city, which could then be compared with another city with lower levels of cigarette consumption or
air pollution.

Prevalence surveys suffer from a number of disadvantages:

1. Because they look at existing cases of a disease, and not at the occurrence of new cases, they
are likely to over-represent chronic diseases and under-represent acute diseases.

2. They may be unusable for acute diseases, which few people suffered from at the moment they
were surveyed.

3. People with some types of disease may leave the community, or may be institutionalized,
causing them to be excluded from the survey.

Findings of prevalence surveys must be interpreted cautiously; the mere fact that two variables (such as
high fish intake and reduced coronary disease) are associated does not mean that they are causally related.

Although they are expensive and laborious, prevalence surveys are common because they can pro-
duce valuable data about a wide range of diseases, behaviors, and characteristics. These data can be
used ro generate hypotheses for more analytic studies to examine.

EXERCISES
Questions 1-7

Select the single, best answer to the following questions.

Which of the following research methods studies only people who are initially free of the disease
of interest?

A case-control study
A case series study
A prevalence survey
A cohort study

A clinical trial

Can o

2. What is the purpose of a control group in an experimental study?

a. It permits an ethical alternative for patients who do not wish to be subjected to an experimen-
tal treatment.

b. It allows larger numbers of patients to be used, thus increasing the power of the statistical tech-
niques used.

c. It helps to eliminate alternative explanations for the results of the study.

d. It reduces the likelihood of making a type II error in hypothesis testing.

3. What is the purpose of randomization in a clinical trial?

a. To equalize the effects of extraneous variables, thus guarding against bias.
b. To allow inferential statistics to be used.
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To guard against placebo effects.
To guard against ethical problems in the allocation of patients to experimental and control
groups.

When a controlled experiment cannot be performed, which of the following is the best alternative?

Case-control study
Cohort study

Case series
Retrospective study
Prevalence survey

A pharmaceutical company develops a new antihypertensive drug. A sample of 24 hypertensive
patients, randomly selected from a large population of hypertensive people, are randomly divided
into 2 groups of 12. One group is given the new drug over a period of 1 month; the other group
is given a placebo according to the same schedule. Neither the patients nor the treating physi-
cians are aware of which patients are in which group. At the end of the month, measurements
are made of the patients’ blood pressures. This study

is a randomized controlled clinical trial.
uses a crossover design.

is a single-blind experiment.

is a prospective study.

is a case-control study.

A researcher wishes to test the effects of a new drug. He gives 100 male patients the drug, and
gives 100 female patients a placebo on the same daily schedule. After 1 month he compares the
reduction in symptoms experienced by the drug and placebo groups. What is the most important
thing that this researcher should have done to improve the validity of his findings?

Used a double-blind design.

Used a prospective design.

Used randomization.

Used dependent and independent variables.
Performed an experimental study instead.

A study compared 150 children with a particular disease with 300 disease-free children to ex-
amine past experiences that may contribute to the development of the illness. What kind of
study is this?

Cohort

Controlled clinical trial
Prospective

Case series
Case-control

Questions 8-15

The following questions are matching. Choose the one best answer to each question.
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9.

10.

11.

12.

13.

14.

15;

Cohort studies
Case-control studies
Case series studies
Prevalence surveys
Controlled clinical trials

Also known as a retrospective study.

Suitable for seeking the cause of very rare diseases.

Are typically very expensive and may take several years to produce results.
Are the only method of establishing the absolute risk of contracting a disease.
Commonly uses random allocation of participants to different groups.

Used to help determine the cause of a disease, can usually be performed quickly and cheaply, re-
quires few subjects, and presents no significant ethical problems.

The most powerful way of establishing cause-and-effect relationships.

Also known as a prospective study.
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Statistics in Epidemiology

Epidemiology is the study of the distribution, determinants, and dynamics of health and disease in
groups of people in relation to their environment and ways of living. The basic statistical measures
in epidemiology are rates and measures of risk.

RATES

All rates consist of a numerator (usually the number of people with a particular condition) and a de-
nominator (usually the number of people at risk), and they usually specify a unit of time. The most
important rates are incidence and prevalence (which are both measures of morbidity), mortality, and
case-fatality.

Incidence

The incidence of a disease is the number of new cases occurring in a particular time period, such as
1 year. The incidence rate is therefore the ratio of new cases of the disease to the total number of peo-
ple at risk:

number of new cases of the disease

Incidence rate = per unit of time

total number of people at risk

The incidence rate is often stated per 100,000 of the population at risk, or as a percentage. Incidence
rates are found by the use of cohort studies, which are therefore sometimes also known as incidence
studies (see Chapter 5). For example, if the incidence of shingles in a community is 2000 per 100,000
per annum, this tells us that in 1 year, 2% of the population experiences an episode of shingles.

Prevalence

The prevalence of a disease is the number of people affected by it at a particular moment in time. The
prevalence rate is therefore the ratio of the number of people with the disease to the rotal number of
people at risk:

number of people with the disease

Prevalence rate = at a particular time

total number of people at risk

Like incidence rates, prevalence rates are often stated per 100,000 people, or as a percentage. They
are generally found by prevalence surveys. For example, at a given time 170 of every 100,000 people
(0.17%) in a community might be suffering from shingles.

Prevalence is an appropriate measure of the burden of a relatively stable chronic condition (such as
hypertension or diabetes). However, it is not generally appropriate for acute illnesses, as it depends
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on the average duration of the disease—it is of little value to speak of the prevalence of pulmonary
emboli or myocardial infarctions.

Prevalence is equal to the incidence multiplied by the average duration of the disease, so an increased
prevalence rate may merely reflect increased duration of an acute illness, rather than suggesting that
members of the population are at greater risk of contracting the disease.

The incidence and prevalence rates of shingles given in the above examples suggest that the average
episode of this illness lasts approximately 1 month, as the prevalence is one-twelfth of the annual in-
cidence. If a new treatment cut the duration of an episode of shingles in half, to 2 weeks, but did noth-
ing to prevent shingles from occurring, the incidence would not change but the prevalence at any
given rime would be cut in half:

Before new treatment:

Prevalence = annual incidence X average duration (in years)
2% x1/12
0.17%

After new trearment:

Prevalence = annual incidence X average duration (in years)
2% X1/24
= 0.085%

Incidence and prevalence are both measures of morbidity, or the rate of illness.

Mortality

Mortality is the number of deaths. The mortality rate is the ratio of the number of people dying
(whether of a specific disease or of all causes) to the total number of people at risk:

total number of deaths

Mortality rate = o per unit of time

total number of people at ris

Like incidence and prevalence, mortality rates may be expressed as a percentage, or the number of
deaths per 1000 or 100,000 people, typically per annum. Mortality is actually a special form of inci-
dence in which the event in question is death rather than contracting a disease. Mortality figures
are likely to be more accurate than incidence figures, because deaths are always recorded whereas
episodes of illness are not. However, accurate records of causes of death are often unavailable, and
mortality rates will not reflect the total burden of illness except in the case of diseases that are al-
ways fatal.

‘Lo The “epidemiologist’s bathtub”
5 o
28 172 The relationships between incidence, prevalence, and mortality in any disease can be
= \/ oy 2 . . : W“w . i ) n . :
visualized with the aid of the “epidemiologist’s bathtub,” shown in Figure 6-1.
. The flow of water through the faucet into the bathtub is analogous to incidence,
representing the arrival of new cases of the disease.
o The level of water in the tub represents the prevalence, or number of cases of the
disease existing at any given point in time.
o The flow of water out through the drain represents mortality.
o The evaporation of water represents either cure or a natural progression to recovery.

Alzheimer's disease provides an example of the application of the “bathtub.” The incidence (inflow
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Recovery

llncidence

Prevalence

(Mortality)

Figure 6-1

of water) of Alzheimer’s disease is roughly constant, and modern medicine is able to keep Alzheimer’s
patients alive for longer, thus reducing the mortality rate from the disease (partially blocking the
drain). However, because there is no cure for the disease, and it never progresses to recovery, the re-
sult is clearly an increased prevalence (increased water level)—which is apparent in the United
States today. This picture is also broadly true of AIDS in the United States.

Case fatality
The case fatality rate (CFR) is the ratio of the number of people dying in a particular episode of a
disease to the total number of episodes of the disease, expressed as a percentage:

total number of people dying in an episode of the disease

X 100

CFR =
total number of episodes of the disease

The CFR is a measure of the prognosis, in terms of life or death, for an episode of a given disease, be-
cause it shows the likelihood of one episode or occurrence of it resulting in death. It is used to follow
the effectiveness of treatments over time or in different places (e.g., what is the CFR of acute myo-
cardial infarction or pulmonary embolism in a given hospital or communiry?).

Attack rates

The attack rate is the ratio of the number of people contracting a particular disease to the total num-
ber of people at risk, expressed as a percentage:

number of people contracting a disease %100

Attack rate = -
total number of people at risk

For example, if 1000 people eat at a barbecue at which contaminated food is served, and 300 of these
people become sick, the attack rate is (300/1000) X100 = 30%.

Attack rates are useful in attempting to deduce the source of an epidemic. To take the barbecue ex-
ample, different people will have eaten different combinations of foods. Table 6-1 shows the atrack
rates for each food.
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Table 6-1

Food Number who ate Number who got sick Attack rate
Chicken only 100 25 25%
Ribs only 80 10 12.5%
Cole slaw only 20 7 35%
Chicken & ribs only 200 18 9%
Chicken & ribs & cole slaw 600 240 40%
Overall 1000 300 30%

The source of the illness can be deduced by inspecting the table for the maximum difference berween
any two attack rates. The largest difference between any two attack rates is 31%, which is the differ-
ence berween the lowest rate, 9% (in those who ate the chicken and ribs only), and the highest rate,
40% (in those who ate the chicken, ribs, and cole slaw). The implication is therefore that the cole
slaw is the source.

Adjustment of rates

Researchers may want to compare rates across different populations (e.g., to compare the incidence
of a disease in two cities or countries). However, if the populations differ significantly on one or more
factors that are relevant to the illness in question, the comparison will be biased.

For example, a researcher wants to compare the prevalence of AIDS in two cities of equal size.
City A has a large proportion of elderly people, whereas city B does not—so it would not be sur-
prising if city A had a lower prevalence of AIDS than city B. However, due to the confounding
effects of the different age structures of the two cities’ populations, this prevalence rate alone tells
the researcher nothing about any real underlying difference in the prevalence of AIDS in the
two cities.

This biasing influence of a confounding variable such as age can be removed by the technique of ad-
justment (or standardization) of rates. This involves calculating rates for the two populations as if
they were both the same in terms of the factors (such as age) that are relevant to the disease, so that
their rates of the disease can be compared. This kind of process of adjustment (or standardization)
can be done not only for age, burt also for any other relevant factor that differs substantially between
two populations that are being compared. Adjustment can be made for two or more factors simulta-
neously; for example, if city A had many more IV drug abusers than city B, this difference could also
be adjusted for. Mortality rates are commonly standardized, producing a statistic called standardized
mortality ratio (SMR). USMLE will not require knowledge of the mathematics of adjustment of
rates.

MEASUREMENT OF RISK

Information about the risk of contracting a disease is of great value in medicine. The knowledge that
something is a risk factor for a disease can be used to help in:
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. preventing the disease,
e predicting its future incidence and prevalence,
. diagnosing it (diagnostic suspicions will be aroused if it is known that a patient was

exposed to the risk factor), and

. establishing the cause of a disease of unknown etiology.

Absolute risk

The fundamental measure of risk is incidence. The incidence of a disease is, in fact, the absolute risk
of contracting it. For example, if the incidence of a disease is 10 per 1000 people per annum, then the
absolute risk of a person actually contracting it is also 10 per 1000 per annum, or 1% per annum.

It is useful ro go beyond absolute risk and to compare the incidence of a disease in different groups of
people to find out if exposure to a suspected risk factor (such as smoking cigarettes) increases the risk
of contracting a certain disease (such as lung cancer). A number of different comparisons of risk can
be made, including relative risk, attributable risk, and the odds ratio. All these are called measures
of effect—they measure the effect of being exposed to a risk factor on the risk of contracting a dis-
ease.

The ideal way of determining the effect of a risk factor is by a controlled experiment, but this is rarely
ethical. The best alternative is the cohort (prospective) study, in which the incidence of disease in
exposed and nonexposed people can be observed directly.

One of the main goals of these studies (such as the Framingham Study and the Western Group Col-
laborative Study, described briefly in Chapter 5) is to find the extent to which the risk of contracting
the disease is increased by exposure to the risk factor. The two measures that show this are relative
risk and attributable risk.

Relative risk

*\Elb P

T © Relative risk states by how many times exposure to the risk factor increases the risk of

%__ \/ : 3 contracting the disease. It is therefore the ratio of the incidence of the disease among
exposed persons to the incidence of the disease among unexposed persons:

incidence of the disease among persons exposed to the risk factor

Relative risk =
incidence of the disease among persons nor exposed to the risk factor

As an example, Table 6-2 reports the results of a hypothetical cohort study of lung cancer in
which 1008 heavy smokers and 1074 nonsmokers were followed for a number of years. The in-
cidence of lung cancer over the rotal time period of the study among people exposed to the risk
factor (heavy cigarette smoking) is 283/1008, or .28 (28%), while the incidence among those not
exposed is 64/1074, or .06 (6%).

The relative risk is therefore .28/.06, or 4.67, showing that people who smoked cigarettes heav-
ily were 4.67 times more likely to contract lung cancer than were nonsmokers. (Note thart this
not a measure of absolute risk—it states nothing about the likelihood of heavy smokers con-
tracting cancer in absolute terms.)

Because relative risk is a ratio of risks, it is sometimes called the risk ratio, or morbidity ratio. In the
case of outcomes involving death, rather than just disease, it may also be called the mortality ratio.

Many clinical trials report relative risk reductions due ro the use of a drug; relative risk reduction is
equal to 1 — relartive risk:
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Table 6-2
DISEASE OUTCOME
RISK Lung Cancer No Lung Cancer Total
Exposed (heavy smokers) 283 725 1008
Nonexposed (nonsmokers) 64 1010 1074
Total 347 1735 2082
T T P

Relative risk reduction = 1 — relative risk

Relative risk reduction figures may be misleading if not understood properly. This can be illustrated
by the well-known West of Scotland Coronary Prevention (WOSCOPS) study (Shepherd et al.,
1995):

This study was a double-blind randomized clinical trial in which approximately 6000 men with
elevated cholesterol levels were randomly assigned to groups taking either a placebo or the cho-
lesterol-lowering drug pravastatin for an average of 4.9 years.

There were 73 deaths from cardiovascular causes in the placebo group (3293 men); the cardiovascu-
lar mortality rate was therefore 73/3293 = 0.022 (2.2%) in this group. In the pravastatin group (3302
men), there 50 deaths from cardiovascular causes, giving a mortality rate of 50/3302 = 0.015, or 1.5%.
The relative risk of death in those given the drug is 1.5/2.2 = 0.68, so the relative risk reduction is 1
— 0.68 = 0.32, or 32%—showing that an impressive 32% of cardiovascular deaths were prevented
by the drug.

However, the absolute risk reduction is 2.2% — 1.5% = 0.7%—a far less impressive-sounding fig-
ure, showing that of all men given the drug for 4.9 years, 0.7% of them were saved from a cardiovas-
cular death.

Absolute risk reduction allows calculation of another statistic that is of clinical importance. If 0.7%
of patients were saved by the drug, this implies that (100/0.7) = 143 patients would have to be treated
to save 1 life. This figure is called the number needed to treat, or NNT, and it allows the effective-
ness of different treatments to be compared:

Number needed to treat = 1{absolute risk reduction

The NNT allows a further calculation—the cost of saving one life with the treatment. WOSCOPS
showed that 143 men needed to be treated for 4.9 years (58 months) to save 1 life; as the dose of
pravastatin used in the study costs approximately $100 per month, it would cost $100 X58 = $5800
to treat one man for this length of time. It would therefore cost $5800 X143 = $829,400 to prevent
one cardiovascular death over this period. This gives a very different perspective on the value of a
treatment than the statement that it reduces the risk of death by 32%. Similar analyses can be per-
formed easily for almost any clinical trial in the literature.

Attributable risk

The attributable risk is the additional incidence of a disease that is attributable to the risk factor in
question. It is equal to the incidence of the disease in exposed persons minus the incidence of the dis-
ease in nonexposed persons.
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In the example of lung cancer and smokers, the attributable risk is .28 — .06, or .22 (22%)—in other
words, of the 28% incidence of lung cancer among the heavy smokers in this study, 22% is attribut-
able to smoking. The other 6% is the “background” incidence of the disease—its incidence among
those not exposed to this particular risk factor. Ateributable risk is sometimes called risk difference,
because it is the difference in the risks or incidences of the disease between the two groups of people.

Odds ratio

Relative risk and attributable risk both require the use of cohort (prospective) studies, as shown pre-
viously. As noted in Chaprter 5, cohort studies are generally expensive and time-consuming and are
therefore often impractical.

A common alternative is to use a case-control (retrospective) study, which compares people with the
disease (cases) with otherwise similar people without the disease (controls), attempting to look back
into the past to see if a possible risk factor is found more frequently among the cases than the con-
trols (see Chapter 5). If the proportion of people who were exposed to the possible risk factor is greater
among the cases, then the risk factor is implicated as a cause of the disease. The odds ratio (or rela-
tive odds) is a measure of these relative proportions—it is the ratio of the odds rhat a case was ex-
posed to the odds that a control was exposed:

odds that a case was exposed to the risk factor
odds that a control was exposed to the risk factor

Odds ratio =

Because the proportion of people in the study who do have the disease is determined by the re-
searcher’s choice, and not by the actual proportion in the population, case-control studies cannot de-
termine the incidence or prevalence of a disease, so they cannot determine the risk of contracting a dis-
ease. The odds ratio must therefore be used instead of relative risk when analyzing case-control data
instead of cohort dara.

For example, the hypothetical data that were used to illustrate the calculation of relative risk in
Table 6-2 can be used, but now it will be assumed that these data were generated by a case-control
study in which history of prior exposure to the risk factor (cigarette smoking) was compared be-
tween 347 cases (with lung cancer) and 1735 controls (without lung cancer).

As defined previously, the odds ratio is the ratio of the odds that a case was exposed to the odds that
a control was exposed; it can be shown! thar this is equal to

number of cases exposed to risk factor (A) X number of controls not exposed (D)
number of controls exposed to risk factor (B) X number of cases not exposed (C)

Table 6-3 shows that:
283 of the cases were exposed to the risk factor (A)
725 of the controls were exposed to the risk factor (B)
64 of the cases were not exposed to the risk factor (C)

1010 of the controls were not exposed to the risk factor (D)

283 X 1010 _ 285830

= 6.16
725 X 64 46400

The odds ratio is, therefore,




Statistics in Epidemiology 75

Table 6-3
DISEASE OUTCOME
Lung Cancer No Lung
RISK (Cases) Cancer Total
Exposed (heavy smokers) 283 (A) 725 (B) 1008
Nonexposed (nonsmokers) 64 (C) 1010 (D) 1074
Total 347 1736 2082

In other words, among the people studied, a person with lung cancer was 6.16 times more likely to
have been exposed to the risk factor (cigarette smoking) than was a person without lung cancer.

An odds ratio of 1 indicates that a person with the disease is no more likely to have been exposed to
the risk factor than is a person without the disease, suggesting that the risk factor is not related to the
disease. An odds ratio of less than 1 indicates that a person with the disease is less likely to have been
exposed to the risk factor than is a person without the disease, implying that the risk factor may ac-
tually be a protective factor against the disease.

In some ways the odds ratio is similar to the relative risk: both figures demonstrate the strength of the
association between the risk factor and the disease, albeit in different ways. As a result of their simi-
larities, the odds ratio is sometimes called estimated relative risk—it provides a reasonably good es-
timate of relative risk provided that the incidence of the disease is low (which is usually true of chronic
diseases), and that the cases and controls examined in the study are representative of people with and
without the disease in the population.

NOTE

The derivation of this is as follows. Referring to the cells in Table 6-3, the odds that a case was
AllA+C) _ AIC

exposed are m

The odds that a control was exposed are %{{%};—:%)j = B/D.
The ratio of these odds is % ;

which, when cross-multiplied, becomes QLD

-l
EXERCISES

Questions 1-3

Select the single, best answer to the following questions.
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A new treatment reduces the average duration of an illness, but it does not alter the number of
new cases or the number of people dying of the disease. It will therefore

decrease the prevalence of the disease.

increase the prevalence of the disease.

decrease the incidence of the disease.

increase the incidence of the disease.

leave both incidence and prevalence unchanged.

In a 5-year period, there were 160 cases of pulmonary embolism recorded in a hospital. Twenty
of these cases resulted in death. The case-fatality rate is therefore

160 — 20 = 140.

160 %20 = 3200.

(160 x20)/5 = 640.
20/160 = 0.125 or 12.5%.
160/20 = 8.

Improved prevention of an acute, nonfatal disease is likely to

decrease the prevalence of the disease.

increase the prevalence of the disease.

decrease the incidence of the disease.

increase the incidence of the disease.

decrease both the incidence and prevalence of the disease.

Questions 4-9

The following questions refer to Table 64, which shows the number of cases of breast cancer occurring
in a randomized clinical trial of a new drug designed to prevent the disease. In this study, 1000 healthy
women between the ages of 60 and 65 were given the drug and 1000 were given the placebo for 5 years.

4.

o oo o

What is the absolute risk (over the 5 years duration of the study) of getting breast cancer for pa-
tients in the placebo group?

4%
1.6

24
67.5%
0.4

Table 6-4

DISEASE OUTCOME
TREATMENT Breast cancer No breast cancer
Placebo 40 960
Drug 10 990
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What is the absolute risk (over the 5 years duration of the study) of getting breast cancer for pa-
tients in the drug group?

30
25%
1%
4
0.5

What is the relative risk reduction of breast cancer attributable to the drug?

25%
50%
75%
100%
150%

What is the absolute risk reduction in breast cancer attributable to the drug?

1%
2%
3%
4%

What is the number needed to treat (NNT) to prevent one case of breast cancer?

2

3

4

333

Cannot be calculated from the information given.

If the drug cost $100 per month, what would be the cost of preventing I case of breast cancer in
this 5-year study?

$1200
$6000
$20,000
$200,000
$330,000



Statistics in Medical Decision Making

Medical decision making often involves using various kinds of tests or numeric data. Any physician
using a diagnostic test—whether a physical test or a laboratory test performed on an individual pa-
tient, or a screening test being used on a whole population—will want to know how good the test is.

This is a complex question, as the qualities and characteristics of tests can be evaluated in several im-
portant ways. To assess the qualiry of a diagnostic test, it is necessary as a minimum to know its

. validity and reliability,
° sensitivity and specificity, and
® positive and negative predictive values.

When using quantitative test results—such as measurements of fasting glucose, serum cholesterol,
and hematocrit levels—the physician will need to know the accuracy and precision of the measure-
ment as well as the normal reference values for the variable in question.

VALIDITY

The validity of a test is the extent to which it actually tests what it claims to test—in other words,
how closely its results correspond to the real state of affairs. The validity of a diagnostic or screening
test is, therefore, its ability to show which individuals have the disease in question and which do not.
To be truly valid, a test should be highly sensitive, specific (see section on Sensitivity and Specificity
in this chapter), and unbiased. Quantitatively, the validity of a diagnostic or screening test is the pro-
portion of all test results that are correct, as determined by comparison with an accepted standard
(sometimes called the gold standard) which is known to be totally correct.

Validity is synonymous with accuracy. As stated in Chapter 2, the accuracy of a figure or measure-
ment is the degree to which it is immune from systematic error or bias. To the extent that a mea-
surement or test result is free from systematic error or bias, it is accurate and valid. When assessing
the validity of a research study as a whole, two kinds of validity are involved:

s Internal validity: are the results of the study valid for the population of patients
who were actually studied?

. External validity: are the results of the study valid for other patients?

For example, a study of 1000 white American women might demonstrate that calcium supplements
are beneficial in preventing osteoporosis. The study, if properly performed on a representative ran-
dom sample of white American women, would be internally valid. However, what does it tell a physi-
cian who wants to prevent osteoporosis in a patient population that may come from a different de-
mographic background?

78 |
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RELIABILITY

Reliability is synonymous with repeatability and reproducibility—it is the level of agreement between
repeated measurements of the same variable. Hence, it is also called test-retest reliability. In the case
of a test of a stable variable, it can be quantified in rerms of the correlation between measurements

3

made at different times. This is the test’s “reliability coefficient.”

Reliability corresponds to precision, defined in Chapter 2 as the degree to which a figure is immune
from random variation. A test that is affected very little by random variation will obviously produce
very similar results when it is used to measure a stable variable at different times. A reliable test is
therefore a consistent, stable, and dependable one.

The reliability or repeatability of a test influences the extent to which a single measurement may be
taken as a definitive guide for making a diagnosis. In the case of a highly reliable test, one measure-
ment alone may be sufficient to allow a physician to diagnose with confidence; however, if the test is
unreliable in any way, this may not be possible. The inherent instability of many biomedical variables
(such as blood pressure) often makes it necessary to repeat a measurement at different rimes and to
use the mean of these results to obtain a reliable measurement and make a confident diagnosis.

In practice, neither validity nor reliability is usually in question in routine hospital laboratory test-
ing. Standard laboratory tests have been carefully validated, and careful quality control procedures in
the laboratory ensure reliability.

A test or measurement may be reliable or precise without necessarily being valid or accurate. For ex-
ample, it would be possible to measure the circumference of a person’s skull with great reliability and
precision, but this would certainly not constitute a valid assessment of the person’s intelligence.

Bias may also cause a reliable and precise measurement to be invalid. A laboratory balance, for ex-
ample, may weigh very precisely, with very little variation between repeated weighings of the same
object. However, if it has not been zeroed properly, all its measurements may be 3 mg too high, caus-
ing all its results to be biased and hence inaccurate and invalid.

Conversely, a measurement may be valid, yet unreliable. In medicine this is often due to the inher-
ent instability of the variable being measured. Repeated measurements of a patient’s blood pressure
may vary considerably; yet if all these measurements cluster around one figure, the findings as a whole
may accurately represent the true state of affairs (e.g., that a patient is hypertensive).

REFERENCE VALUES

No matter how high the quality of a set of measurements, they do not in themselves permir the physi-
cian to make a diagnosis, even if they are both valid and reliable. To make a diagnosis, the physician
must have some idea of the measurement’s range of values among normal, healthy people. This range
is called the normal range or reference range, and the limits of this range are the reference values
that the physician will use to interpret the values obtained from the patient. (The range between the
reference values is sometimes called the reference interval).

How can a valid set of reference values be established? The “normal range” or “reference range” of a
biomedical variable is often arbitrarily defined as the middle 95% of the normal (or Gaussian) distri-
bution—in other words, the population mean plus or minus two standard deviations (explained in
Chaprer 2). The limits of this range, derived from a healthy population, are therefore the “reference
values.” The assumptions being made here are that:

. the 95% of the population that lie within this range are “normal,” whereas the 5%
beyond it are “abnormal” or “pathologic,” and

. the “normal range” for a particular biomedical variable (e.g., serum cholesterol) can
be obtained by measuring it in a large representative population of normal, healthy
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individuals, thus obtaining a normal distribution; the central 95% of this normal

distribution would then be the “normal range.”

Although manufacturers of commercial tests may attempt to establish a reference range by testing

thousands, or even tens of thousands of individuals, the practical facts are as follows:

. There is nothing inherently pathologic about the 5% of the population outside this
“normal range”; typically, there are some healthy people who have “abnormally”
high or low values. Indeed, in some cases an abnormal value—such as a low serum
cholesterol value or a high [Q—may be a positive sign rather than a negative one.

. Many biologic variables turn out to be skewed rather than normally distributed in

the population.

. The population that is tested to establish the normal range is not usually unam-
biguously free of disease, because it is difficult to find a large sample of “normal” peo-

ple who are healthy in every way.

e If this strictly statistical definition of normality and abnormality were adhered o,
all diseases would have the same prevalence rate of 5%.

In pracrice, the normal range and the corresponding reference values presented in a given laboratory’s
manual often represent a compromise between the statistically derived values and clinical judgment,
and may be altered from time to time as the laboratory gains experience with a given test. The val-
ues must always be interpreted in the light of other factors that may influence the data obtained about
a given patient, such as the patient’s age, weight, gender, diet, and the time of day when the speci-

men was drawn or the measurement made.

SENSITIVITY AND SPECIFICITY

Sensitivity and specificity are both measures of a test’s validity—its ability to correctly detect people
with or without the disease in question. They are best understood by referring to Table 7-1, which

shows the four logical possibilities in diagnostic testing:

TP: A positive test result is obtained in the case of a person who has the disease; this is a

“true-positive” finding.

Table 7-1
DISEASE

Present Absent
T
E
s = False positive
T Positive Toie F ?gp)smve (type Il error)
R (FP)
E
3 False negative -
L Negative (type | error) True n?_gatwe
T (FN) (TN)




FP: A positive test result is obtained in the case of a person who does not have the disease;
this finding is therefore a “false-positive” one, which is a type Il error.

FN: A negative test result is obtained in the case of a person who does have the disease; this
i1 - p
is a “false-negative” result, which constitutes a type I error.

TN: A negative test result is obtained in the case of a person who does not have the disease;
this is a “true-negative” result.

Sensitivity

The sensitivity of a test is its ability to detect people who do have the disease. It is the percentage of
the people with a disease that is correctly detected or classified:

number testing positive who have the disease (TP)

% 100
total number tested who have the disease (TP + FN)

Sensitivity =

Thus, a test that is always positive for individuals with a given disease, identifying every person with
that disease, has a sensitivity of 100%. Therefore, a test that is insensitive leads to missed diagnoses
(false-negative results), whereas a sensitive test produces few false-negative results.

A sensitive test is obviously required in situations in which the consequences of a false-negative re-
sult are serious, such as with a serious condition that is treatable or transmissible. Thus, high sensi-
tivity is required of tests used to screen donated blood for human immunodeficiency virus (HIV), for
eytologic screening tests (Pap smears) for cervical cancer, and for mammograms.

QELD . Very sensitive tests are therefore used for screening or ruling out disease; if the result of a
T © highly sensitive test is negative, it allows the disease to be ruled out with confidence.
[&] 2 - h.‘..h _lu " ] 4 h S TFive rec h
3 "2 A mnemonic for this is the word Snout”—reminding one that a SeNsitive test with a

\/ Negative result rules OUT the disease.

Specificity

The specificity of a test is its ability to detect people who do not have the disease. It is the percent-
age of the disease-free people who are correctly classified or detected:

number testing negative who do not have the disease (TN)
total number tested who do not have the disease (FP + TN)

Specificity = % 100

Thus, a test that is always negative for healthy individuals, identifying every nondiseased person, has
a specificity of 100%. A test that is low in specificity therefore leads to many false-positive diagnoses,
whereas a test that is highly specific produces few false-positive results.

High specificity is required in situations in which the consequences of a false-positive diagnosis are
serious. Such situations include those in which the diagnosis may lead to the initiation of dangerous,
painful, or expensive treatments (as in the case of cancer chemotherapy); in which a diagnosis may
be unduly alarming (HIV, cancer); in which a diagnosis may cause a person to make irreversible de-
cisions (Alzheimer’s disease); or in which a diagnosis may result in a person being stigmatized (schizo-
phrenia, HIV, tuberculosis).

QIELD Very specific tests are therefore appropriate for confirming or ruling in the existence ofa
g" o disease. If the result of a highly specific test is positive, the disease is almost certainly
S8 2 present. A mnemonic for this is the word “Spin”—reminding one that a SPecific test
= J vy I = :

with a Positive result rules IN the disease.

In clinical practice, sensitivity and specificity are inversely related: an increase in one causes a de-
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crease in the other. This is because groups of patients with the disease and groups who are disease-
free lie on a continuum, overlapping each other, rather than forming two rotally discrete groups. The
tester therefore has to select a “cutoff point” to make a diagnostic decision.

For example, the fasting glucose levels of the populations of people who have diabetes and peo-
ple who do not have diabetes form two overlapping distributions resembling those shown in Fig-
ure 7-1.

[t is apparent that when a test of the fasting glucose level is used to diagnose diabetes, the choice of
cutoff point will determine the test’s sensirivity and specificity.

The current generally accepted cutoff point for the diagnosis of diabetes is a fasting glucose level of
126 mg/ml, as shown. This is close to being 100% sensitive—there are a few false-negatives (people
with diabetes incorrectly classified as nondiabetic), but not many. There are, however, a substantial
number of false positives, so the test is not 100% specific.

If the cutoff point were lowered to 100 mg/100 ml, the test would be 100% sensitive, correctly iden-
tifying every person with diabetes. Nevertheless, it would have a very low specificity, and the number
of false-positive results would be unacceptably high—many persons who do not have diabetes would
be incorrectly diagnosed with the disease. As this suggests, highly sensitive tests are likely to have low
specificity. Although they correctly classify the vast majority of people with a certain disease (mak-
ing few false-negative or type I errors), they tend to classify many healthy people incorrectly (mak-
ing a large number of false-positive or type II errors).

As the cutoff point is increased, it is clear that the test’s sensitivity would gradually decrease and its
specificity would increase, until the cutoff point reached 150 mg/100 ml, at which point it would be
100% specific. At this level it would correctly identify all persons who do not have diabetes, but it
would be highly insensitive, incorrectly diagnosing many persons with diabetes as being free of the
disease. Highly specific tests are therefore likely to be associated with a high number of false-negative
(type 1) errors.

It is clear from Figure 7-1 that a test can only be 100% sensitive and 100% specific if there is no
overlap between the population that is normal and the population that has the disease. For exam-

ple, if nobody with diabetes had a fasting glucose level below 130 mg/100 ml, and nobody without
diabetes had a level above 120 mg/100 ml, there would be no problem of a tradeoff between sensi-

Nondiabetics Diabetics

T T T T T T T T T T T
40 60 80 100 120 140 160 180 200 220 240 260 280 300
Fasting glucose, mg/100 mli

Figure 7-1
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tivity and specificity—a cutoff point of 126 mg/100 ml would be perfect. This kind of situation does
not occur commonly, and when it does, the disease may be so obvious that no diagnostic testing is
required.

QIELD Although there are tests of relatively high sensitivity and specificity for some diseases,
rY & it is often best to use a combination of tests when screening for or diagnosing a partic-
% S ular disease. A highly sensitive (and usually relatively cheap) test should be used first,

]

\ \f : almost guaranteeing the detection of all cases of the disease (albeit at the expense of

including a number of false-positive results). This should be followed by a more specific
(and usually more expensive) test to eliminate the false-positive results. This is the usual sequence of
testing for HIV, hepatitis B, and many other common but serious diseases.

PREDICTIVE VALUES

When the sensitivity of a test is known, it is possible to answer the question, “Given that a patient
has the disease, what is the ability of the test to discover this?” When the specificity of a test is known,
it is possible to answer the question, “Given that a patient is free of the disease, what is the ability of
the test to discover this?”

These are both the kinds of questions that an epidemiologist might ask when screening for a disease.
The epidemiologist wants to know, for example, how good a test is at detecting the presence or ab-
sence of HIV infection, or what percentage of people with HIV infection will be detected with the
test. However, these are not the kinds of questions that the practicing physician or the patient wants
answered; when faced with a test result, they want to know how likely it is that the disease really is
present or absent. This is a different question altogether, and answering it requires knowledge of the
predictive values of the test.

Positive predictive value

LD . The positive predictive value (PPV) of a test is the proportion of positive results that
{}' © are true positives, i.e., the likelihood that a person with a positive test result actually
3 2 has the disease:

number who test positive and have the disease (TP)

PPV =
toral number who test positive (TP + FP)

Knowing a test’s PPV allows one to answer the question, “Given that the patient’s test result is posi-
tive, how likely is it that he or she really has the disease?” This is the kind of information that a pa-
tient who tests positive (for HIV, for example) wants to know.

Negative predictive value

\ELD The negative predictive value (NPV) of a test is the proportion of negative results that
are true negatives, i.e., the likelihood that a person with a negative result truly does not

)
-
j 5 have the disease:

)

number who test negative and do not have the disease (TN)

BiFy= total number who test negative (FN + TN)

Knowing a test’s NPV allows one to answer the question, “Given that the test result is negative, how
likely is it that the disease really is absent?” Once again, this is the kind of information a patient is
concerned about.
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g.'ng the test itself, predictive values vary according to the prevalence (or underlying probability)

3 \/ "2 of the disease. Thus, predictive values cannot be determined without prior knowledge

of the prevalence of the disease—they are not qualities of the test per se, but are a func-
tion of the test’s characteristics and of the setting in which it is being used.

The higher the prevalence of a disease in the population, the higher the PPV and the lower the NPV
of a test for it. If a disease is rare, even a very specific test may have a low PPV because it produces a large
number of false-positive results. This is an important consideration because many new tests are first used
in hospital populations, in which a given disease may be quite common. Hence, a test may produce only
afew false-positive results at first but when it is used in the general population (in which the disease may
be quite rare), it may produce an unacceprably high proportion of false-positive results.

An example makes the relationship between predictive values and prevalence clearer.

Table 7-2 shows the results of a community-wide HIV screening program, using a test that is 90%
sensitive and 99% specific. The community has a population of 10,000, of whom 10 are HIV-
positive—so the prevalence of HIV infection is 10 in 10,000, or 0.1%.

Because the test is 90% sensitive, 9 of 10 people with HIV are detected, leaving 1 false-negative re-
sult. Because the test is 99% specific, 99% of the uninfected population, or 9890 people, are correctly
identified as being free of the virus, leaving 100 false-positive results. What are the predictive values
of the test?
. The PPV of the test is TP/(TP + FP), or 9/(9 + 100), which is approximately equal
to 0.08. This means that there is only an 8% chance that a person with a positive
test result actually has the virus.

. The NPV is TN/(EN + TN), or 9890/(1 + 9890) = 0.9999, meaning that a per-
son with a negative test can be virtually 100% sure that he or she does not have the
virus.

If there were an equally sensitive (90%) and specific (99%) test for diabetes, and 1000 people in this
population had diabetes, the prevalence would be 1000 per 10,000, or 10%. The results of a screen-
ing program for diabetes in the community would be as shown in Table 7-3.

Table 7-2
HIV INFECTION
Present Absent
T
E
S
Positive 9 100
T a (TP) (FP)
R
E
g Negative 1 9890
L (FN) (TN)
T
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Table 7-3
DIABETES
T Present Absent
E
S
¥ 900 90
Positive
R (TP) (FP)
E
s
U
L Negative 100 8910
T (FN) (TN)

Because the test is 90% sensitive, 900 of the 1000 people with diabetes are detected. Because the test
is 99% specific, 99% of the 9000 people who do not have diabetes, or 8910 people, will be classified
correctly, leaving 90 false-positive results. What are the predictive values of this test, which has ex-
actly the same sensitivity and specificity as the HIV test?

° The PPV of this test is TP/(TP + FP), or 900/990, which is approximately equal to
0.91, meaning that there is a 91% chance that a person with a positive test result
actually has diabetes.

° The NPV of the test is TN/(FN + TN), or 8910 + 9010, or approximately 0.99,
meaning that there is a 99% chance that a person with a negative test result actu-
ally does not have diabetes.

The enormous difference between the PPVs of the tests for diabetes (91%) and HIV (8%) is entirely
due to the different prevalences of the two diseases, as the two tests are identical in terms of their sen-
sitivity and specificity. As the prevalence of the disease increases, PPV increases and NPV decreases.

Because the PPV increases as the prevalence of the disease increases, one way of improving a test’s
PPV, and hence avoiding a large number of false-positive results, is to restrict its use to high-risk mem-
bers of the population. For example, if it were decided to use the HIV test only on the 10% of the
population who are at the highest risk for HIV, the results might be as shown in Table 7-4.

Referring to the previous example of the HIV screening program, it is now assumed that all 10
HIV infections occurred among members of the high-risk group. Because the test is 90% sensi-
tive, 9 of 10 people with HIV are correctly identified, as before. Because the test is 99% specific,
99% of the 990 uninfected people, or 980 people, are correctly identified, leaving 10 false-
positive results. What are the predictive values now?

° The PPV of the test, TP/(TP + FP), is now 9/19, or 0.47 (47%), which is a vast
improvement on the previous figure of 8%.
. The NPV of the test, TN/(TN + EN), is 980/981, or approximately 0.99, so it is

essentially unchanged.
Note how the PPV of the test has been enarmously improved by limiting its use to
high-risk members of the population.
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Table 7-4
HIV INFECTION

T Present Absent
E
s
T Positive 9 10

(7P) (FP)
R
E
S
u
L Negative 1 980
= (FN) (TN)

EXERCISES

Select the single, best answer to the following questions.

0o

A physician uses an HIV test that, in his population, has a known sensitivity of 99.9%, speci-
ficity of 96.9%, positive predictive value of 93.2%, and negative predictive value of 99.7%.
Which of these characteristics best permits him to reassure a patient who is worried that the neg-
ative HIV test result he has just received may in fact be an error?

The sensitivity of the test
The specificity of the test
The positive predictive value of the test
The negative predictive value of the test

A test for hepatitis C is performed for 200 patients with biopsy-proven disease and 200 patients
known to be free of the disease. The test shows positive results on 180 of the patients with the
disease, and negative results on 150 of the patients without the disease. Among those tested, this
test therefore

has a positive predictive value of 90%.
has a negative predictive value of 79%.
has a sensitivity of 90%.

has a specificity of 82.5%.

The information given is insufficient.

Due to an effective prevention program, the prevalence of an infectious disease in a community
has been reduced by 90%. A physician continues to use the same diagnostic test for the disease
that she has always used. How have the test’s characteristics changed?

Its sensitivity has increased.
Its specificity has decreased.
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c. Its positive predictive value has increased.
d. Its negative predictive value has increased.
e. The test’s characteristics have not changed.

Questions 4 and 5

Select the single, best answer to the questions referring to the following figure.

4.  Figure 7-2 shows the distributions of patients who are disease-free and patients who have a cer-
tain disease according to their scores on a new quantitative diagnostic test. If the disease in ques-
tion is fatal if it is not treated, but the treatment is safe and inexpensive, which of the labeled
points on the graph represents rthe best diagnostic cutoff point?

o0 o
Mmoo 0=

w

5. If the disease in Question 4 universally follows a course of gradual deterioration with eventual
death after a period of years, and cannot be treated effectively, which of the labeled points on
the graph represents the best diagnostic cutoff point?

a o0 o
moO®E

Normal Diseased

Figure 7-2
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Question 6

Select the single, best answer to the following question.

6. A blood transfusion service wishes to screen for an incurable blood-borne disease with a high at-
tack rate. Although its primary responsibility is to the patients who are recipients of its blood,
the service is also required to inform blood donors if they are infected with this disease. If there
is no test for the disease that is both highly sensitive and highly specific, how should the service
test donated blood?

a.  With a very sensitive test only
. With a very specific test only
c.  With a very sensitive test initially before blood is sent out to be transfused, and then with a very
specific test before informing the donor
d.  With a very specific test initially before blood is sent out to be transfused, and then with a very
sensitive test before informing the donor
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Ultra-High-Yield Review

Most USMLE Step 1 candidates probably spend no more than 3 to 5 hours reviewing biostatistics. In
this short time, the candidate should be able to memorize the ultra-high-yield items in this checklist.
Together with a background understanding from the previous chaprers in this book, these items
should equip the candidate to pick up a good number of points in a subject area that is neglected by
many students and medical schools, which should mean that biostatistics in itself will be relatively a
high-yield subject on the examination for the candidate. After this list and the referenced material
in this book have been reviewed, a self-test can be administered by using the USMLE-style exercise
questions at the end of each chapter.

The USMLE Step 1 candidate should:

O
(|

o 0O

[ 1 Y

O

O

be able to use the addition and multiplication rules of probability (page 3).

be able to find and use the three measures of central tendency (page 11).

] mean.
O mode.
O median.

understand the standard deviation (page 13).

know and be able to use the proportions of the normal distribution which are within
or beyond 1, 2, or 3 standard deviations from the mean (page 13).

understand and be able to use z-scores (page 15).

understand confidence limits and be able to find 95% confidence limits (page 25).
understand precision and accuracy (the dartboard analogy) (page 26).

understand how sample size relates to precision (page 26).

know exactly how to increase precision and reduce the width of the confidence in-
terval (page 26).

know how to be 95% confident about the true mean of a population (page 26).
know the meaning and limitations of p values and staristical significance (page 37).

know the meaning of type I and type II errors in hypothesis testing and in diag-
nostic testing (page 37).

an
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O
O
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O

know how to avoid type I and type II errors in hypothesis testing (page 37).

know the meaning of a test’s power, how to increase it, and the dangers of a lack of
power (the radar screen analogy) (pages 37-38).

know the meaning of main and interaction effects in ANOVA (the beards and lip-
stick analogy) (page 44).

know the use of chi-square (page 46).

know the meaning and use of correlation coefficients and r values (page 50).

be able to avoid the temptation to infer causation from correlation (page 52).

be able to interpret scattergrams of bivariate distributions (page 51).

calculate and know the meaning of the coefficient of determination (r?) (page 52).
know what regression techniques do (pages 52-53).

memorize Table 4—1 to be able to choose the appropriate basic test for a given re-
search question (page 54).

know the purposes of the features of clinical trials: (pages 59-60)

O control groups.
O blinding.
O randomization or matching.

know the advantages, disadvantages, and typical uses of:

O cohort studies (the Framingham study and chimney sweeps example)
(pages 62-63).

O case-control studies (DES and vaginal carcinoma study) (page 63).

O case series studies (page 64).

O prevalence surveys (page 64).

be able to choose the appropriate type of research study for a given question (pages

62-64).
know the meanings of and be able to find: (pages 68-69)

O incidence.

O prevalence.

O morbidity.

O mortality.

O and the relationships between them (the epidemiologist’s bathtub) (page

70).
know the meaning of case-fatality and attack rates (page 70).
know the meanings of and be able to find: (pages 72-73)

O absolure risk and absolute risk reduction.
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= relative risk and relative risk reduction.
O number needed to treat.

know the meaning of validity (including internal and external validity) and relia-
bility (page 78-79).

know the meanings of and be able to find:

[ sensitivity (page 81).
O specificity (page 81).
| positive predictive value (page 83).
O negative predictive value (page 83).

know how changing a test’s cutoff point will affect its sensitivity and specificity
(page 82).

know what kind of test to use to rule in or rule our a disease (mnemonics “Snout”
and “Spin”) (page 81).



Appendix 1: Statistical Symbols

Symbols are listed in order of their appearance in the text.

n

q

v oq

&

Qan

A single element
Number of elements in a population
Number of elements in a sample

The probability of an event occurring. In
reports of statistical significance, p is the
probability that the result could have been
obtained by chance—i.e., the probability
that a type [ error is being made

The probability of an event not occurring;
equal to (1 = p)

Frequency

Centile (or percentile) rank; or confidence
level

Mode

Median

Population mean

Sample mean

The sum of

Deviation score

Population variance

Sample variance

Population standard deviation (SD)
Sample standard deviation (SD)

The number of standard deviarions by
which a single element in a normally dis-

df

- » i =

=

tributed population lies from the popula-
tion mean; or the number of standard er-
rors by which a random sample mean lies
from the population mean

The mean of the random sampling distrib-
ution of means

Standard error or standard error of the mean
(standard deviation of the random sampling
distribution of means) [SEM or SE]

Estimated standard error (estimated stan-
dard error of the mean)

The number of estimated standard errors
by which a random sample mean lies from
the population mean

Degrees of freedom

The criterion level at which the null hy-
pothesis will be accepted or rejected; the
probability of making a type | error

Probability of making a type 11 error
A rario of variances

Chi-square; a test of proportions
Correlation coefficient

Rho; Spearman rank order correlation co-
efficient

Coefficient of determination

Regression coefficient; the slope of the re-
gression line




Appendix 2: Exercise Answers

CHAPTER 1

10.

11.

. d—DBias occurs when a result consistently errs in a particular direction. If the sample is drawn

from smokers who come to the physician’s office, and these patients are likely to smoke more
than those who do not come to the physician’s office, then the result will consistently tend
to overestimate the number of cigarettes smoked by all the smokers in the practice. Sys-
tematic samples can be as representative as simple random samples.

d—The multiplication rule of probability tells us that the probability of two or more inde-
pendent events all occurring is equal to the product of their individual probabilities. The
probability of one patient being a smoker is 20% (0.2), and the probability of the next pa-
tient being a smoker is also 0.2; so the probability of two smokers appearing in succession is

0.2 X0.2, or 0.04.

a—The addition rule of probability tells us that the probability of any one of several partic-
ular events occurring is equal to the sum of their individual probabilities. The probability of
a patient being a smoker is 20% (0.2), and the probability of a patient being a woman is 0.5;
so the probability of the next patient being a smoker or a woman is 0.2 + 0.5 = 0.7.

d—The number of cigarettes smoked constitures a ratio scale—there is an absolute zero, and
meaningful ratios do exist. It is discrete data, not continuous—as the physician is counting
the whole number of cigarettes smoked.

a—The frequency distribution has been stated to be a normal distribution, and in any nor-
mal distribution the three measures of central tendency (mean, mode, and median) will all
be coincident (as shown in Fig. 1-9).

d—The deviation score (x) corresponding to smoking 24 cigarettes is 8, as 24 minus the
mean (16) is 8.

c—The physician is finding the mean of the squares of the deviation scores, which is the def-
inition of variance.

d—Standard deviation is the square root of the variance, and 4 is the square root of 16.

b—The z-score of an element is the number of standard deviations by which the element
lies above (positive z-scores) or below (negative z-scores) the mean. In this case, the mean
is 16, and the standard deviation is 4, so an element with a value of 24 or 2 standard devia-
tions lies above the mean.

a—Twenty-four cigarettes corresponds to a z-score of +2, as shown in Question 9. For all
normal distributions, 2.5% of the distribution lies above a z-score of +2, so 2.5% of smok-
ers in this population smoke more than 24 cigarettes per day, as shown in Figure 1-1.

d—Twenty cigarettes a day corresponds to a z-score of +1 (as 20 lies 1 standard deviation
above the mean, 16); as 68% of the distribution lies between z-scores of +1 and —1, 32%

.
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12.

13.

Frequency

QRO
Lo}

Y.

'y

aQq

I-q -0
I T |
4 8 12 16 20 24 28
In
Figure A1

lies in the “tails” of the distribution, beyond these points. Normal distributions are symmet-
rical by definition, so 16% of the distribution must lie above x = +1.

d—Twelve cigarettes a day corresponds to a z-score of —1 (as 12 lies 1 standard deviation
below the mean, 16). As seen in the answer to Question 11, 16% of the distribution lies be-
low this score. This means that the probability of the next (presumably random) smoker
smoking less than 12 cigarettes per day is also 16%, or .16.

c—Table 1-3 shows that the z-score that divides the top 5% of the distribution from the re-
maining 95% is approximately + 1.65. The score (or number of cigarettes) corresponding to
this y-score is therefore the mean, (16) plus 1.65 standard deviations (4), or 16 + 6.6 = 22.6,
or approximately 23.

CHAPTER 2

e—The research problem clearly involves the use of inferential statistics. It would be im-
practical to weigh every adult male New Yorker (b), and therefore only a sample of New
Yorkers should be weighed. The central limit theorem tells us that as long as the sample is
random (d or e), it does not matter that the underlying population may not be normally dis-
tributed; so (a) is not necessary. A larger sample (e) is clearly preferable to a smaller one (d).

a—Random samples that are drawn from the population of interest will be accurate (unbi-
ased); hence a and b are likely to be accurate. Samples that are drawn from a nonrandom
subset of the population, such as joggers (c and d) will be inaccurate or biased (joggers may
be likely to weigh less than other members of the population). Large samples (a) will give
precise estimates, whereas small samples (b) will give imprecise estimates.

c—Estimated standard error is equal to the sample standard deviation (15) divided by the
square root of (n — 1); with n = 101, the estimated standard error is therefore 1.5.

b—The 95% confidence limits are equal to the mean (72) plus or minus approximately 2
standard errors (2 % 1.5), or 69 and 75.

b—The width of the confidence interval is (75 — 69) or 6.

d—To halve the width of the confidence interval, standard error needs to be halved, and the
only way to do this is by quadrupling n.
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7. b—Halving the width of the confidence interval is the same as doubling precision, as the
degree to which the estimate is affected by random variation has halved. Bias has not been
reduced, as this is dependent on the truly random quality of the sample.

8. e—The new estimate will be more precise (because the standard deviation is less, and hence
the estimated standard error and the width of the confidence interval will be reduced), but
it is less accurate (because of the biased nature of the sample).

9.  ¢— Although the oncologist's predictions were precise, their estimates clearly erred in a con-
sistently pessimistic direction and were therefore biased.

CHAPTER 3

1. ¢—The p value is the probability that the result could be due to chance, rather than due to
areal effect; thus, if the drug were ineffective, there is still a .05 chance that this result could
have been obtained. The researchers are 95% certain that the drug is effective, and the study
is clearly powerful enough to detect an effect, as one was detected. Because the p value is =
.05, the result is statistically significant.

2. d—Once again, the p value is the probability that the result could be due to chance, and it
is therefore the probability that the null hypothesis is being rejected incorrectly—the prob-
ability of making a type I or false-negative error. As a significant result was obtained, and the
null hypothesis rejected, the sample size clearly was adequate.

3. b—Chi-square is a test of proportion or nominal scale data (e.g., number or proportion of
immunized patients developing zoster versus number or proportion of nonimmunized
patients developing zoster). None of the other hypotheses involve tests of proportion or
involve nominal scale data.

4. ¢—ANOVA is used when comparisons are being made between multiple group means.
Hypotheses involving just two means (a, e) are best tested with a t-test, whereas those in-
volving proportions or frequencies of nominal data (b, d) are best tested with a chi-square test

5. b—As the sample drawn is random, the central limit theorem tells us that the sample mean
is a member of a normal distribution (the random sampling distribution of means), irre-
spective of the shape of the underlying population distribution. All the other answers are
correct.

6. d—Reducing alpha, or making the decision criterion more stringent, allows one to be more
confident that any significant results are not due to chance. However, it reduces the likeli-
hood that statistically significant results will be obtained (a), makes a type II error more
likely (as it increases the likelihood of accepting the null hypothesis) (b), and makes a type
I error less likely (as it decreases the likelihood of rejecting the null hypothesis) (c). The
power of the test is reduced by making alpha more stringent (e).

7. a—An inability to obtain a statistically significant finding may be due to a sample size that
is too small (a lack of power)—not one that is too large, which will increase the likelihood
of statistical significance.

CHAPTER 4

1. b—The percentage of variance in one variable accounted for by the other is 12, or 0.8 x0.8
= 0.64. Correlation does not imply causality, so increasing the value of one variable (at-
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tending class more) will not necessarily increase the value of the other (grade). A correla-
tion coefficient of 0.8 is considered to be high, and the low p value means it is statistically
significant. Although there may be a nonlinear correlation, there clearly is a strong linear
one, as the Pearson rechnique is strictly linear.

e—Correlation coefficients vary from a minimum —1.00 to a maximum of +1.00, indicat-
ing perfect negative and positive correlations, respectively. The lecturer is clearly in error.

a—This constitutes a nominal (or categorical) division of data; the groups are simply named.

c—Chi-square is used to test hypotheses concerning differences between proportions or fre-
quencies in categories.

a—This problem involves making comparisons of ratio scale data (survival time) across mul-
tiple groups, and ANOVA is therefore appropriate.

c—Regression is used to determine a quantitative relationship which permits the value of
one variable to be used to predict the value of another.

b—The correlation is strong (0.7), positive, and statistically significant. Correlation in it-
self does not demonstrate a causal relationship, so it provides no evidence that work satis-
faction or enjoying one’s work will cause one to live longer. Nor does it provide any indica-
tion as to what percentage of people who enjoy their work have above-average life
expectancy. The proportion of variability in life expectancy that can be mathematically ac-
counted for by work satisfaction is r2 = 0.49 or 49%.

c—A correlation coefficient alone does not demonstrate causality; there could be other rea-
sons why there is a relationship between drug dosage and blood pressure. The low p value
shows that the finding is unlikely to be due to chance (a); a correlation coefficient of —0.3 is
a weak negative one (b); drug dosage accounts for r2 = 0.09 or 9% of the variation in blood
pressures (d); and regression techniques would allow a quantitative prediction to be made (e).

b—Overall, the drugs have no effect nor does the gender of the patient; the answer to
whether the drugs have any effects at all is “it depends” (on the type of drug and the gender
of the patient), showing that there is an interaction between the drug and the gender of the
patient. Although there are no main effects (¢, d, and e), it is incorrect to say that there are
no effects at all (a).

CHAPTER 5

1. d—Cohort studies start with a group of people who do not have the disease of interest, and

follow them over time to see which of them subsequently develop the disease. All the other
research methods generally include at least some patients who have the disease of interest;
the only exception might be a clinical trial of a treatment intended to prevent the disease.

. ¢—Control groups help to eliminate alternative explanations for the results of the study. If

75% of patients given a certain treatment recover from an illness, it could be argued that
these patients would have recovered anyway (spontaneous remission). However, if only 20%
of a comparable control group recovered, this alternative explanation is not tenable.

. a—The random assignment of patients to experimental and control groups aims to equalize

the effects of extraneous variables (such as age and disease severity), so that patients in the
two groups are comparable.

. b—Cohort studies are the most powerful form of nonexperimental study and are the best al-

ternative to controlled experiments. They are the only means of determining the absolute
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10.

11.
12.

13.

14.

15.

risk of contracting a disease, and their assessment of risk factors is not biased by outcome or
recall.

a—This is a randomly controlled clinical trial, as the patients are randomly allocated to the
control and treatment groups. It is double-blind, not single-blind, as neither the patients nor
the treating physicians are aware of this allocation.

. ¢—The biggest failing in this study is that patient gender is a confounding factor, and it will

not be possible to know if any difference between the treatment and control groups is due
to the treatment or to the gender of the patients. Random allocation of patients to the two
groups would have partly or entirely overcome this problem. This study is an experiment,
and it does have a dependent variable (reduction in symptoms) and an independent vari-
able (administration of the drug). A double-blind design would also have been advanta-
geous, but its absence is not as serious an error as the problem of confounding and lack of
randomization.

e—This is a case-control study. The 150 children with the disease are cases, and the 300
disease-free children are the controls. Thus, it is a retrospective study, looking at past events.
There is no intervention, so it is not a controlled clinical trial.

b—Case-control studies look back at past events and are therefore retrospective.

. b—Case-control studies are suitable for seeking the cause of very rare diseases, as they study

patients who already have the disease.

a—Cohort studies are expensive, and it may be several or many years before enough mem-
bers of the cohort develop the disease(s) of interest.

a—Cohort studies are the only way of establishing the absolure risk of contracting a disease.

e—Controlled clinical trials typically use random allocation of participants to different
groups, such as to treatment and control groups.

b—Case-control studies are a quick and cheap way of helping to find the cause of the dis-
ease even when only a few subjects are available. They present no significant ethical prob-
lems because the researcher does not intervene to change a situation, but looks back into
the past at events that have already happened.

e—Controlled clinical trials are the most powerful way of establishing cause-and-effect re-
lationships.

a—Cohort studies are also known as prospective studies, as they look forward for diseases or
events that have not yet occurred.

CHAPTER 6

a—It will decrease the prevalence of the disease, as prevalence is equal to incidence times
the average duration of the disease. The incidence is unchanged because the number of new
cases is unchanged.

d—Twenty of 160 cases resulted in death, so the case-fatality rate is 20/160 or 12.5%, mean-
ing that 12.5% of all cases of pulmonary embolism resulted in death. The rate refers to the
proportion of cases resulting in death, not to the number of cases or deaths per annum.

e—Improving the prevention of a disease will obviously decrease the number of new cases
(incidence) of the disease. The “epidemiologist’s bathtub” should be recalled: reducing the
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9.

flow of water into the bathtub will clearly also result in reduced levels of water (reduced
prevalence) if all other factors remain unchanged.

a—The absolute risk of the discase is the same as its incidence, which in the placebo group
is 40 in 1000, or 4%.

c—The absolute risk of the disease is the same as its incidence, which in the drug group is
10 in 1000, or 1%.

c—The relative risk of the disease in those who took the drug is 1.0/4.0 or 0.25. This means
that patients exposed to the drug had 25% of the risk of cancer of those who took the
placebo. The relative risk reduction is therefore 1 — 0.25 = 0.75 or 75%.

c—The absolute risk reduction is the difference between the absolute risk or incidence in
the control group (4%) and the absolute risk or incidence in the drug group (1%)—so it is
3%. Note the difference between the absolute risk reduction of 3% and the relative risk re-
duction of 75%.

d—The absolute risk reduction in breast cancer was 3%—in other words, of 100 women
treated, 3 fewer would have contracted breast cancer. The number needed to treat to pre-
vent one case is therefore 33.3.

d—The drug costs $100 per month, or $1200 per annum, or $6000 over the 5 years of the
study. As 33.3 patients needed to be treated for 5 years to prevent one case of breast cancer,
the cost of preventing one case is 6000 x33.3 = $200,000.

CHAPTER 7

d—The negative predictive value is the proportion of negative results that are true nega-
tives. The patient can be told that it is 99.7% certain that he does not have HIV.

c¢—This type of question is best answered by constructing a 2 X2 table along the lines of
Table 7-2. The test is 90% sensitive, because it correctly identifies 180 patients (true posi-
tives) out of the total of 200 patients who do have the disease. It is 75% specific, as it cor-
rectly identifies 150 (true negatives) out of a total of 200 patients who do not have the dis-
ease. lts PPV is the proportion of patients with positive test results who actually have the
disease [true positives/(true positives + false positives)| = 180/230 = 78.3%. lts NPV is the
proportion of patients with negative test results that truly do not have the disease [true neg-
atives/(false negatives + true negatives)] = 150/170 = 88.2%.

d—The NPV of the test will increase due to the decreased prevalence of the disease, as there
will be fewer false negatives. The PPV will decrease; even a quite sensitive test can produce
an unacceptable number of false positives when it is used for a rare disease. Sensitivity and
specificity are inherent characteristics of a test which do not change according to the con-
text in which the test is used.

b—As the disease is fatal if untreated, the consequences of a type 1 (false-negative) diag-
nostic error are catastrophic: a patient will be incorrectly diagnosed as not having the dis-
ease and will die as a result. The cutoff for diagnosis should therefore be set at a point that
guarantees 100% sensitivity, which is point B. In this example, there is no significant penalty
for type Il (false-positive) diagnostic errors, as treating patients who do not actually have the
disease is safe and inexpensive.

d—The dismal prognosis means that it is essential to avoid making a type I (false-positive)
diagnostic error. The cutoff point should therefore be set at a point that guarantees high
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specificity, so that no patient without the disease is incorrectly diagnosed with it. As there
is no treatment, the consequences of making a type I error, and telling a person with the dis-
ease that he or she does not have it, are not severe. Alzheimer’s disease is one example of
this kind of disease.

c—The primary requirement is for a very sensitive test to rule out the disease (Snout) so that
the blood can be given safely to a recipient. If this first test result is positive, the blood will
not be used, but as a very sensitive but nonspecific test will have a substantial number of false
positives, the donor should not be informed that he has the disease until it has been ruled
in (Spin) by a second test that is very specific rather than sensitive. This is the typical se-
quence of testing done for HIV and hepatitis C.
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